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0 はじめに

光が媒質の境界面へ斜めに入射すると、反射光が偏光になる現象、さらに、Brewster角（反射光と透過光の射線が互いに

垂直になるような入射角）において直線偏光になるという性質は、どのような仕組みで生じるのだったかな？ と思ったの

で、計算練習を兼ね、光の反射に関する式をすべて導出してみた。そのメモを残す。

少しだけ説明をしておく。Brewster角で直線偏光になるというのは電場が境界面に平行な成分（s成分）だけになるので

あるが、ということは、磁場は境界面に垂直な入射面内の成分（p成分）だけになるということである。このことに関して、

Maxwell方程式は電場と磁場について対称な形をしているのに、なぜ、電場のほうが s成分、磁場のほうが p成分と非対称

になるのか、という疑問がかねてよりあった。それゆえに、この計算では、その理解を深めることを狙って、導出の過程を、

数学的に電場と磁場の対称性が保たれるような操作で進められる限り進め、表記上も対称性が明確になるように記述した。

結果として、数学的な構造の上では、やはり、電場と磁場は対称だ（どちらかが p成分・s成分などと限定はされない）と

いうことがわかった。現実に電場が s 成分、磁場が p 成分の偏光になる理由は、現実の物質に透磁率の差がほとんどなく

µ12 = 1 とおくことにあるということが理解された。

以上の方針のためもあり、この文書では、「Brewster角」という用語を（ µ12 = 1 でない場合を含めて）「TE波と TM波の

それぞれに関して、反射光の振幅が 0 になるような入射角」という意味で使っている。普通は、Brewster角とは「 µ12 = 1

の場合に TM波の反射光の振幅が 0 になる入射角」のことをいうので、この文書中での「Brewster角」は普通とは意味が

違っており、極端な言い方では誤用と言うこともできる。読む際には注意してほしい。

もう一つ断っておく。波の計算は 複素表示 ei ω t を用いるのが楽であるに決まっているのだが、より初歩的な概念であ

る実数の三角関数表示を用いても同じ結果が得られるはずなので、そのことを確認するのも貴重な資料となると思い、敢え

て三角関数表示で行った。だから、全体を通して、普通の教科書の記述よりはかなり冗長である。おそらく倍以上の手数に

なっているであろう。とくにエヴァネッセント波の式を導出するところは、ほとんどが無駄な努力である。しかしこのこと

もまた、その冗長な考察のおかげで、論理的にどのような根拠でもってエヴァネッセント波の式を正しいと認めるのか、と

いう基礎概念に気づく部分もあったので、無意味ではないと思っている。

トレーニングのために、基本的に教科書などを見ず自分で考えて計算した（だから「計算メモ」なのである）が、最後の

Goos-Hänchenシフトの XGH を導出する部分だけはさすがにわからなかったので、参考文献を読み、それに従った。
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1 平面波を表す式

電場 E 、 磁場 H 、 電束密度 D 、 磁束密度 B 、 誘電率 ε 、 透磁率 µ 。

Maxwell方程式は

∇×E = −∂B
∂t

∇×H = +
∂D

∂t

すなわち

∇×E = −µ ∂H
∂t

(1)

∇×H = +ε
∂E

∂t
(2)

光速を c とすると、平面波の直線偏光は

E = E0 sin

[
ω

(
t− r · c

c2

)
+ δ

]
(3)

H = H0 sin

[
ω

(
t− r · c

c2

)
+ δ

]
(4)

ここで

∇×E =



∂

∂y

(
E0z sin

[
ω

(
t− r · c

c2

)
+ δ

])
− ∂

∂z

(
E0y sin

[
ω

(
t− r · c

c2

)
+ δ

])
∂

∂z

(
E0x sin

[
ω

(
t− r · c

c2

)
+ δ

])
− ∂

∂x

(
E0z sin

[
ω

(
t− r · c

c2

)
+ δ

])
∂

∂x

(
E0y sin

[
ω

(
t− r · c

c2

)
+ δ

])
− ∂

∂y

(
E0x sin

[
ω

(
t− r · c

c2

)
+ δ

])



=



− ω

c2
cos

[
ω

(
t− r · c

c2

)
+ δ

]
·
(
E0z

∂

∂y

(
r · c

)
− E0y

∂

∂z

(
r · c

))
− ω

c2
cos

[
ω

(
t− r · c

c2

)
+ δ

]
·
(
E0x

∂

∂z

(
r · c

)
− E0z

∂

∂x

(
r · c

))
− ω

c2
cos

[
ω

(
t− r · c

c2

)
+ δ

]
·
(
E0y

∂

∂x

(
r · c

)
− E0x

∂

∂y

(
r · c

))



=



− ω

c2
cos

[
ω

(
t− r · c

c2

)
+ δ

]
·
(
E0z cy − E0y cz

)
− ω

c2
cos

[
ω

(
t− r · c

c2

)
+ δ

]
·
(
E0x cz − E0z cx

)
− ω

c2
cos

[
ω

(
t− r · c

c2

)
+ δ

]
·
(
E0y cx − E0x cy

)



=



ω

c2

(
E0y cz − E0z cy

)
cos

[
ω

(
t− r · c

c2

)
+ δ

]
ω

c2

(
E0z cx − E0x cz

)
cos

[
ω

(
t− r · c

c2

)
+ δ

]
ω

c2

(
E0x cy − E0y cx

)
cos

[
ω

(
t− r · c

c2

)
+ δ

]


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また

−µ ∂H
∂t

=



− µωH0x cos

[
ω

(
t− r · c

c2

)
+ δ

]
− µωH0y cos

[
ω

(
t− r · c

c2

)
+ δ

]
− µωH0z cos

[
ω

(
t− r · c

c2

)
+ δ

]


である。

これらと (1)式より 

H0x

H0y

H0z


=



E0z cy − E0y cz

c2 µ

E0x cz − E0z cx

c2 µ

E0y cx − E0x cy

c2 µ


(5)

2 入射波・反射波・透過波

右手系の直交座標系をとる。入射面内に x軸と z 軸をとり、入射面に垂直に y 軸をとる。入射波の進行方向が x の正の

向きかつ z の正の向きとなるようにとる。媒質の境界は z = 0 の平面とする。

入射側の媒質中の誘電率・透磁率・光の速さをそれぞれ ε1 、 µ1 、 c1 とし、透過側の媒質中の誘電率・透磁率・光の速

さをそれぞれ ε2 、 µ2 、 c2 とする。入射角を θ 、屈折角を ϕ とすれば、入射波の 速度 ci 、反射波の 速度 cr 透過波の

速度 ct は、それぞれ

ci =

 c1 sin θ
0

c1 cos θ

 (6)

cr =

 c1 sin θ
0

−c1 cos θ

 (7)

ct =

 c2 sinϕ
0

c2 cosϕ

 (8)

となる。

たとえば (6)式を電場 (3)式と磁場 (4)式に適用すれば、入射波の電場は、入射波の δ = 0 となるよう時間の原点を選んで

E = E0 sin

[
ω

(
t− r · ci

ci
2

)]
= E0 sin

[
ω

(
t− x sin θ + z cos θ

c1

)]
と表せ、磁場は

H = H0 sin

[
ω

(
t− r · ci

ci
2

)]
= H0 sin

[
ω

(
t− x sin θ + z cos θ

c1

)]
と表せる。

反射波と透過波についても、波の速度については (7) (8)式を適用して同様に書き下せるのだが、 δ を TE波と TM波と

で分けて扱わないと一般の表現ができない。
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3 p成分と s成分

入射波・反射波・透過波の電場の p成分の振幅をそれぞれ E∥ 、 E∥
′ 、 E∥

′′ とし、s成分の振幅をそれぞれ E⊥ 、 E⊥
′ 、

E⊥
′′ とする。入射波・反射波・透過波の磁場の p成分の振幅をそれぞれ H∥ 、 H∥

′ 、 H∥
′′ とし、s成分の振幅をそれぞ

れ H⊥ 、 H⊥
′ 、 H⊥

′′ とする。ただし、p成分の振幅はいずれも x成分の振幅と同じ符号とし、s成分の振幅はいずれも

y 成分の振幅と同じ符号とする。

すると

E0x

E0y

E0z


=



E∥ cos θ

E⊥

− E∥ sin θ





E0x
′

E0y
′

E0z
′


=



E∥
′ cos θ

E⊥
′

E∥
′ sin θ





E0x
′′

E0y
′′

E0z
′′


=



E∥
′′ cosϕ

E⊥
′′

− E∥
′′ sinϕ




H0x

H0y

H0z


=



H∥ cos θ

H⊥

−H∥ sin θ





H0x
′

H0y
′

H0z
′


=



H∥
′ cos θ

H⊥
′

H∥
′ sin θ





H0x
′′

H0y
′′

H0z
′′


=



H∥
′′ cosϕ

H⊥
′′

−H∥
′′ sinϕ


(9)

である。

電場の振幅と磁場の振幅の関係 (5)式に対して、入射波・反射波・透過波の速度として (6) (7) (8)式を使い、電場と磁場

の x・y・z 成分の振幅として (9)式を使えば、入射波・反射波・透過波のそれぞれについての「p・s成分に関する電場の振

幅と磁場の振幅の関係」
H∥ = − E⊥

c1 µ1

H⊥ =
E∥

c1 µ1

H∥
′ =

E⊥
′

c1 µ1

H⊥
′ = −

E∥
′

c1 µ1

H∥
′′ = −E⊥

′′

c2 µ2

H⊥
′′ =

E∥
′′

c2 µ2


(10)

が得られる。

4 TE波と TM波

TE波は電場を s成分しか持たない波で、 E∥ = 0 である。すると (10)式より H⊥ も 0 であるから、 E0x 、 E0z 、H0y

が 0 である。反射波・透過波も同様である。つまり、電場の x・z 成分と磁場の y 成分は TE波とはつねに無関係である。

TM波は磁場を s成分しか持たない波で、H∥ = 0 である。すると (10)式より E⊥ も 0 であるから、E0y 、H0x 、H0z

が 0 である。反射波・透過波も同様である。つまり、電場の y 成分と磁場の x・z 成分は TM波とはつねに無関係である。

よって、電場・磁場に関するすべての式は

• 電場の y 成分・磁場の x成分・磁場の z 成分 は TE波

• 電場の x成分・電場の z 成分・磁場の y 成分 は TM波

と完全に分離され、議論は TE波と TM波に対して別個に行われることになる。
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このことにもとづき、TE波と TM波それぞれの電場と磁場の式を書き並べる。

入射波の電場・磁場を E ・ H 、反射波のを E′ ・ H ′ 、透過波のを E′′ ・ H ′′ とする。(3) (4)式に波の速度として

(6) (7) (8)式を適用し、振幅として (9)式を適用する。TE波の反射波・透過波の δ をそれぞれ δ′E ・ δ′′E とし、TM波の反

射波・透過波の δ をそれぞれ δ′M ・ δ′′M とする。TE波・TM波のそれぞれについて、入射波の δ が 0 となるように時間の

原点をとる。

結果は

TE波

Ey = E⊥ sin

[
ω

(
t− x sin θ + z cos θ

c1

)]
Hx = H∥ cos θ sin

[
ω

(
t− x sin θ + z cos θ

c1

)]
Hz = −H∥ sin θ sin

[
ω

(
t− x sin θ + z cos θ

c1

)]
Ey

′ = E⊥
′ sin

[
ω

(
t− x sin θ − z cos θ

c1

)
+ δ′E

]
Hx

′ = H∥
′ cos θ sin

[
ω

(
t− x sin θ − z cos θ

c1

)
+ δ′E

]
Hz

′ = H∥
′ sin θ sin

[
ω

(
t− x sin θ − z cos θ

c1

)
+ δ′E

]
Ey

′′ = E⊥
′′ sin

[
ω

(
t− x sinϕ+ z cosϕ

c2

)
+ δ′′E

]
Hx

′′ = H∥
′′ cosϕ sin

[
ω

(
t− x sinϕ+ z cosϕ

c2

)
+ δ′′E

]
Hz

′′ = −H∥
′′ sinϕ sin

[
ω

(
t− x sinϕ+ z cosϕ

c2

)
+ δ′′E

]



(11)

TM波

Ex = E∥ cos θ sin

[
ω

(
t− x sin θ + z cos θ

c1

)]
Ez = −E∥ sin θ sin

[
ω

(
t− x sin θ + z cos θ

c1

)]
Hy = H⊥ sin

[
ω

(
t− x sin θ + z cos θ

c1

)]
Ex

′ = E∥
′ cos θ sin

[
ω

(
t− x sin θ − z cos θ

c1

)
+ δ′M

]
Ez

′ = E∥
′ sin θ sin

[
ω

(
t− x sin θ − z cos θ

c1

)
+ δ′M

]
Hy

′ = H⊥
′ sin

[
ω

(
t− x sin θ − z cos θ

c1

)
+ δ′M

]
Ex

′′ = E∥
′′ cosϕ sin

[
ω

(
t− x sinϕ+ z cosϕ

c2

)
+ δ′′M

]
Ez

′′ = −E∥
′′ sinϕ sin

[
ω

(
t− x sinϕ+ z cosϕ

c2

)
+ δ′′M

]
Hy

′′ = H⊥
′′ sin

[
ω

(
t− x sinϕ+ z cosϕ

c2

)
+ δ′′M

]



(12)

である。
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5 連続の条件

反射波と透過波の振幅や位相を決めるのは境界条件である。

媒質が不連続に変化する点において

• 電場の、境界面に平行な成分が連続

• 磁場の、境界面に平行な成分が連続

である。

z = 0 の平面が媒質の境界なので、その境界上の 点 r = 0 における電場と磁場を求めてみる。

(11) (12)式に r = 0 を代入すると

TE波

Ey (r=0) = E⊥ sin
[
ω t
]

Hx (r=0) = H∥ cos θ sin
[
ω t
]

Hz (r=0) = −H∥ sin θ sin
[
ω t
]

Ey
′
(r=0) = E⊥

′ sin
[
ω t+ δ′E

]
Hx

′
(r=0) = H∥

′ cos θ sin
[
ω t+ δ′E

]
Hz

′
(r=0) = H∥

′ sin θ sin
[
ω t+ δ′E

]
Ey

′′
(r=0) = E⊥

′′ sin
[
ω t+ δ′′E

]
Hx

′′
(r=0) = H∥

′′ cosϕ sin
[
ω t+ δ′′E

]
Hz

′′
(r=0) = −H∥

′′ sinϕ sin
[
ω t+ δ′′E

]

TM波

Ex (r=0) = E∥ cos θ sin
[
ω t
]

Ez (r=0) = −E∥ sin θ sin
[
ω t
]

Hy (r=0) = H⊥ sin
[
ω t
]

Ex
′
(r=0) = E∥

′ cos θ sin
[
ω t+ δ′M

]
Ez

′
(r=0) = E∥

′ sin θ sin
[
ω t+ δ′M

]
Hy

′
(r=0) = H⊥

′ sin
[
ω t+ δ′M

]
Ex

′′
(r=0) = E∥

′′ cosϕ sin
[
ω t+ δ′′M

]
Ez

′′
(r=0) = −E∥

′′ sinϕ sin
[
ω t+ δ′′M

]
Hy

′′
(r=0) = H⊥

′′ sin
[
ω t+ δ′′M

]
となる。
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よって、 TE波 に関して、 r = 0 における両側の媒質の電場と磁場はそれぞれ�� ��入射側

Ey (r=0) + Ey
′
(r=0) = E⊥ sin

[
ω t
]
+ E⊥

′ sin
[
ω t+ δ′E

]
Hx (r=0) +Hx

′
(r=0) = H∥ cos θ sin

[
ω t
]
+H∥

′ cos θ sin
[
ω t+ δ′E

]
Hz (r=0) +Hz

′
(r=0) = −H∥ sin θ sin

[
ω t
]
+H∥

′ sin θ sin
[
ω t+ δ′E

]

�� ��透過側

Ey
′′
(r=0) = E⊥

′′ sin
[
ω t+ δ′′E

]
Hx

′′
(r=0) = H∥

′′ cosϕ sin
[
ω t+ δ′′E

]
Hz

′′
(r=0) = −H∥

′′ sinϕ sin
[
ω t+ δ′′E

]

である。 TM波 に関して、 r = 0 における両側の媒質の電場と磁場はそれぞれ�� ��入射側

Ex (r=0) + Ex
′
(r=0) = E∥ cos θ sin

[
ω t
]
+ E∥

′ cos θ sin
[
ω t+ δ′M

]
Ez (r=0) + Ez

′
(r=0) = −E∥ sin θ sin

[
ω t
]
+ E∥

′ sin θ sin
[
ω t+ δ′M

]
Hy (r=0) +Hy

′
(r=0) = H⊥ sin

[
ω t
]
+H⊥

′ sin
[
ω t+ δ′M

]

�� ��透過側

Ex
′′
(r=0) = E∥

′′ cosϕ sin
[
ω t+ δ′′M

]
Ez

′′
(r=0) = −E∥

′′ sinϕ sin
[
ω t+ δ′′M

]
Hy

′′
(r=0) = H⊥

′′ sin
[
ω t+ δ′′M

]
である。

境界面に平行な成分は、x成分と y 成分である。つまり、電場・磁場の x成分・y 成分がそれぞれ r = 0 において両側の

媒質で等しいのである。よって

E⊥ sin
[
ω t
]
+ E⊥

′ sin
[
ω t+ δ′E

]
TE波 = E⊥

′′ sin
[
ω t+ δ′′E

]
(13)

H∥ cos θ sin
[
ω t
]
+H∥

′ cos θ sin
[
ω t+ δ′E

]
= H∥

′′ cosϕ sin
[
ω t+ δ′′E

]
(14)

E∥ cos θ sin
[
ω t
]
+ E∥

′ cos θ sin
[
ω t+ δ′M

]
TM波 = E∥

′′ cosϕ sin
[
ω t+ δ′′M

]
(15)

H⊥ sin
[
ω t
]
+H⊥

′ sin
[
ω t+ δ′M

]
= H⊥

′′ sin
[
ω t+ δ′′M

]
(16)

が成り立つ。

(10)式を考慮すると、(13)式と (14)式は

E⊥ sin
[
ω t
]
+ E⊥

′ sin
[
ω t+ δ′E

]
TE波 = E⊥

′′ sin
[
ω t+ δ′′E

]
(17)

− E⊥

c1 µ1
cos θ sin

[
ω t
]
+

E⊥
′

c1 µ1
cos θ sin

[
ω t+ δ′E

]
= −E⊥

′′

c2 µ2
cosϕ sin

[
ω t+ δ′′E

]
(18)

であり、(15)式と (16)式は

c1 µ1H⊥ cos θ sin
[
ω t
]
− c1 µ1H⊥

′ cos θ sin
[
ω t+ δ′M

]
TM波 = c2 µ2H⊥

′′ cosϕ sin
[
ω t+ δ′′M

]
(19)

H⊥ sin
[
ω t
]
+H⊥

′ sin
[
ω t+ δ′M

]
= H⊥

′′ sin
[
ω t+ δ′′M

]
(20)

である。
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6 反射波の振幅と位相

TE波 の反射波の振幅と位相を求めよう。

(17)式を (18)式の右辺に代入して

− E⊥

c1 µ1
cos θ sin

[
ω t
]
+

E⊥
′

c1 µ1
cos θ sin

[
ω t+ δ′E

]
= − E⊥

c2 µ2
cosϕ sin

[
ω t
]
− E⊥

′

c2 µ2
cosϕ sin

[
ω t+ δ′E

]
これを解く。

E⊥
′
(

cos θ

c1 µ1
+

cosϕ

c2 µ2

)
sin
[
ω t+ δ′E

]
= E⊥

(
cos θ

c1 µ1
− cosϕ

c2 µ2

)
sin
[
ω t
]

この等式が t によらず成り立つためには

δ′E = 0 かつ E⊥
′ =

(
cos θ

c1 µ1
− cosϕ

c2 µ2

)
(

cos θ

c1 µ1
+

cosϕ

c2 µ2

) E⊥ (21)

でなければならない。

TM波 の反射波の振幅と位相を求めよう。

(20)式を (19)式の右辺に代入して

c1 µ1H⊥ cos θ sin
[
ω t
]
− c1 µ1H⊥

′ cos θ sin
[
ω t+ δ′M

]
= c2 µ2H⊥ cosϕ sin

[
ω t
]
+ c2 µ2H⊥

′ cosϕ sin
[
ω t+ δ′M

]
これを解く。

H⊥
′
(
−c1 µ1 cos θ − c2 µ2 cosϕ

)
sin
[
ω t+ δ′M

]
= H⊥

(
−c1 µ1 cos θ + c2 µ2 cosϕ

)
sin
[
ω t
]

この等式が t によらず成り立つためには

δ′M = 0 かつ H⊥
′ =

(
c1 µ1 cos θ − c2 µ2 cosϕ

)
(
c1 µ1 cos θ + c2 µ2 cosϕ

) H⊥ (22)

でなければならない。
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以上に結論として得られた (21) (22)式を、対称性が見やすくなるように変形する。

光の 速さ c1 、 c2 は

c1 =
1

√
ε1 µ1

c2 =
1

√
ε2 µ2

(23)

であることが知られている。

これらを使えば、(21)式より TE波 の反射波の振幅

E⊥
′ =

(√
ε1
µ1

cos θ −
√
ε2
µ2

cosϕ

)
(√

ε1
µ1

cos θ +

√
ε2
µ2

cosϕ

) E⊥

E⊥
′ =

√
ε1 µ2 cos θ −√ε2 µ1 cosϕ
√
ε1 µ2 cos θ +

√
ε2 µ1 cosϕ

E⊥ (24)

が、また (22)式より TM波 の反射波の振幅

H⊥
′ =

(√
µ1

ε1
cos θ −

√
µ2

ε2
cosϕ

)
(√

µ1

ε1
cos θ +

√
µ2

ε2
cosϕ

) H⊥

H⊥
′ =

√
ε2 µ1 cos θ −√ε1 µ2 cosϕ
√
ε2 µ1 cos θ +

√
ε1 µ2 cosϕ

H⊥ (25)

が得られる。

さらにわかりやすくするために、誘電率と透磁率の相対値をそれぞれ ε12 、 µ12 とおく。すなわち

ε12 =
ε2
ε1

µ12 =
µ2

µ1

とする。すると、 TE波 の反射波の振幅 (24)式は

E⊥
′ =

√
µ12 cos θ −

√
ε12 cosϕ

√
µ12 cos θ +

√
ε12 cosϕ

E⊥ (26)

となり、 TM波 の反射波の振幅 (25)式は

H⊥
′ =

√
ε12 cos θ −√µ12 cosϕ√
ε12 cos θ +

√
µ12 cosϕ

H⊥ (27)

となる。
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ϕ は θ に依存して定まるため、ϕ を消去して θ で表す形に変形する。

θ も ϕ も 0 以上
π

2
以下であることに留意する。このとき

cosϕ =

√
1− sin2 ϕ

であることと、Snellの法則

sinϕ =
c2
c1

sin θ (28)

から

cosϕ =

√
1− c2

2

c1
2 sin2 θ

である。光の速さと誘電率・透磁率の関係 (23)式を考慮すると

cosϕ =

√
1− ε1 µ1

ε2 µ2
sin2 θ

cosϕ =

√
1− 1

ε12 µ12
sin2 θ (29)

となる。

これを使うと、 TE波 の反射波の振幅 (26)式は

E⊥
′ =

√
µ12 cos θ −

√
ε12

√
1− 1

ε12 µ12
sin2 θ

√
µ12 cos θ +

√
ε12

√
1− 1

ε12 µ12
sin2 θ

E⊥

E⊥
′ =

µ12 cos θ −
√
ε12 µ12 − sin2 θ

µ12 cos θ +

√
ε12 µ12 − sin2 θ

E⊥ (30)

となり、 TM波 の反射波の振幅 (27)式は

H⊥
′ =

√
ε12 cos θ −√µ12

√
1− 1

ε12 µ12
sin2 θ

√
ε12 cos θ +

√
µ12

√
1− 1

ε12 µ12
sin2 θ

H⊥

H⊥
′ =

ε12 cos θ −
√
ε12 µ12 − sin2 θ

ε12 cos θ +

√
ε12 µ12 − sin2 θ

H⊥ (31)

となる。

7 透過波の振幅と位相

透過波の振幅と位相も求めよう。

(17)式に (30)式の E⊥
′ と (21)式の δ′E を代入し、(20)式に (31)式の H⊥

′ と (22)式の δ′M を代入すると

TE波 δ′′E = 0 かつ E⊥
′′ =

2µ12 cos θ

µ12 cos θ +

√
ε12 µ12 − sin2 θ

E⊥ (32)

TM波 δ′′M = 0 かつ H⊥
′′ =

2 ε12 cos θ

ε12 cos θ +

√
ε12 µ12 − sin2 θ

H⊥ (33)

が導かれる。
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8 Brewster角

反射波の振幅が 0 になる入射角（Brewster角）を求める。

TE波 に関しては、(30)式より

µ12 cos θ −
√
ε12 µ12 − sin2 θ = 0

µ12
2 cos2 θ = ε12 µ12 − sin2 θ

µ12
2 cos2 θ = ε12 µ12 −

(
1− cos2 θ

)
cos2 θ =

ε12 µ12 − 1

µ12
2 − 1

(34)

1

cos2 θ
=

µ12
2 − 1

ε12 µ12 − 1

1

cos2 θ
− 1 =

µ12 (µ12 − ε12 )
ε12 µ12 − 1

tan2 θ =
µ12 (µ12 − ε12 )
ε12 µ12 − 1

tan θ =

√
µ12 (µ12 − ε12 )
ε12 µ12 − 1

(35)

を満たす θ が Brewster角である。

TM波 に関しては、(31)式より

ε12 cos θ −
√
ε12 µ12 − sin2 θ = 0

cos2 θ =
ε12 µ12 − 1

ε12
2 − 1

(36)

tan θ =

√
ε12 ( ε12 − µ12 )

ε12 µ12 − 1
(37)

を満たす θ が Brewster角である。

9 Brewster角の存在条件と値

Brewster角が存在するならば、それを θ として、必ず

0 ≤ cos2 θ ≤ 1

である。これが満たされるのは ε12 と µ12 がどのような条件にある場合かを調べる。
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9.1 TE波

TE波 については、(34)式から導く。

まず、 0 ≤ cos2 θ であるための条件は

ε12 µ12 − 1

µ12
2 − 1

≥ 0

ε12 µ12 − 1 ⋛
(
µ12 > 1 なら ≥
µ12 < 1 なら ≤

)
0

ε12 µ12 ⋛ 1

のような変形から  ε12 µ12 ≥ 1

かつ

µ12 > 1

 または

 ε12 µ12 ≤ 1

かつ

µ12 < 1


であると導かれる。いっぽう、 cos2 θ ≤ 1 であるための条件は

ε12 µ12 − 1

µ12
2 − 1

≤ 1

ε12 µ12 − 1 ⋚
(
µ12 > 1 なら ≤
µ12 < 1 なら ≥

)
µ12

2 − 1

ε12 µ12 ⋚ µ12
2

ε12 ⋚ µ12

のような変形から  ε12 ≤ µ12

かつ

µ12 > 1

 または

 ε12 ≥ µ12

かつ

µ12 < 1


であると導かれる。

0 ≤ cos2 θ と cos2 θ ≤ 1 の両方が満たされる条件においてのみ Brewster角が存在するので、上の両方を合わせると

• µ12 > 1 の場合は、
1

µ12
≤ ε12 ≤ µ12 の条件においてだけ Brewster角が存在する。

• µ12 < 1 の場合は、 µ12 ≤ ε12 ≤
1

µ12
の条件においてだけ Brewster角が存在する。

とまとめることができる。

µ12 = 1 の場合については次のように考察できる。まず、 µ12 = 1 かつ ε12 µ12 ̸= 1 の場合について考えると、(34)式の

右辺が（ 分母 = 0 かつ 分子 = 有限値 で）無限大となり、したがって (34)式を満たす θ （Brewster角）は存在しない。

次に、 µ12 = 1 かつ ε12 µ12 = 1 の場合について考えると、このとき ε12 = 1 であり、すなわち「 ε12 = 1 かつ µ12 = 1 」

が成り立っている。これは、2種類の媒質が同一である状況を意味しており、そもそも反射が起こり得る状況ではないので、

やはり Brewster角は存在しないと言える。よって、結局、 µ12 = 1 の場合には、 ε12 にかかわらず、TE波の Brewster角

は存在しない。

なお、Brewster 角はすでに何度も述べているとおり (34) 式もしくはそれを変形した (35) 式により定まるが、とくに

ε12 = 1 の場合には、(35)式が
tan θ =

√
µ12

となって非常に簡単な形が得られる。
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9.2 TM波

TM波 については、(36)式から導く。

まず、 0 ≤ cos2 θ であるための条件は

ε12 µ12 − 1

ε12
2 − 1

≥ 0

ε12 µ12 − 1 ⋛
(
ε12 > 1 なら ≥
ε12 < 1 なら ≤

)
0

ε12 µ12 ⋛ 1

のような変形から  ε12 µ12 ≥ 1

かつ

ε12 > 1

 または

 ε12 µ12 ≤ 1

かつ

ε12 < 1


であると導かれる。いっぽう、 cos2 θ ≤ 1 であるための条件は

ε12 µ12 − 1

ε12
2 − 1

≤ 1

ε12 µ12 − 1 ⋚
(
ε12 > 1 なら ≤
ε12 < 1 なら ≥

)
ε12

2 − 1

ε12 µ12 ⋚ ε12
2

µ12 ⋚ ε12

のような変形から  ε12 ≤ µ12

かつ

ε12 > 1

 または

 ε12 ≥ µ12

かつ

ε12 < 1


であると導かれる。

0 ≤ cos2 θ と cos2 θ ≤ 1 の両方が満たされる条件においてのみ Brewster角が存在するので、上の両方を合わせると

• ε12 > 1 の場合は、
1

ε12
≤ µ12 ≤ ε12 の条件においてだけ Brewster角が存在する。

• ε12 < 1 の場合は、 ε12 ≤ µ12 ≤
1

ε12
の条件においてだけ Brewster角が存在する。

とまとめることができる。

ε12 = 1 の場合については次のように考察できる。まず、 ε12 = 1 かつ ε12 µ12 ̸= 1 の場合について考えると、(36)式の

右辺が（ 分母 = 0 かつ 分子 = 有限値 で）無限大となり、したがって (36)式を満たす θ （Brewster角）は存在しない。

次に、 ε12 = 1 かつ ε12 µ12 = 1 の場合について考えると、このとき µ12 = 1 であり、すなわち「 ε12 = 1 かつ µ12 = 1 」

が成り立っている。これは、2種類の媒質が同一である状況を意味しており、そもそも反射が起こり得る状況ではないので、

やはり Brewster角は存在しないと言える。よって、結局、 ε12 = 1 の場合には、 µ12 にかかわらず、TM波の Brewster角

は存在しない。

なお、Brewster 角はすでに何度も述べているとおり (36) 式もしくはそれを変形した (37) 式により定まるが、とくに

µ12 = 1 の場合には、(37)式が
tan θ =

√
ε12

となって非常に簡単な形が得られる。
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9.3 ここまでの結論のまとめ

以上をまとめて整理したものが下表である。これは、 ε12 と µ12 の様々な値に対して、Brewster角が存在するかどうか、

また、存在するならばその値を示したものである。 ε12 と µ12 の「 0 」および「 ∞ 」に対する表の値は、極限値である。

表中の四角いマスは、 ε12 = µ12 または ε12 =
1

µ12
の場合を示している（左下から右上への対角線上のマスが前者、左上か

ら右下への対角線上のマスが後者である）。表の中央のマスの「
π

4
」という値は、 ε12 または µ12 を 1 に限りなく近づけた

場合の極限値である（前述したように実際にはその条件では Brewster角は存在しないと言える）。

TE波の Brewster角

小 ← ← ← ε12 → → → 大

0 · · · · · · · · · 1 · · · · · · · · · ∞

大 ∞ π

2

π

2

π

2

π

2

π

2

π

2

π

2

π

2
不定

↑
...

π

2
· · · · · · · · · · · · 0

↑
...

π

2
· · ·

a
rc
ta
n
√
µ
1
2

· · · 0

↑
...

π

2
0

µ12 1 存在しない
π

4
存在しない

↓
... 0

π

2

↓
... 0 · · ·

ar
ct
an
√
µ
1
2

· · · π

2

↓
... 0 · · · · · · · · · · · · π

2

小 0 0 0 0 0 0 0 0 0 不定

TM波の Brewster角

小 ← ← ← ε12 → → → 大

0 · · · · · · · · · 1 · · · · · · · · · ∞

大 ∞ 不定 不定

↑
... 0

π

2
存在しない 0

π

2

↑
... 0

...
π

2
0

...
π

2

↑
... 0

...
...

π

2
0

...
...

π

2

µ12 1 0 arctan
√
ε12

π

4
arctan

√
ε12

π

2

↓
... 0

...
... 0

π

2

...
...

π

2

↓
... 0

... 0
π

2

...
π

2

↓
... 0 0 存在しない

π

2

π

2

小 0 0
π

2
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グラフを描いてみると、次のようになる。
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10 現実の場合

現実の物質は、強磁性体を除き、比透磁率が 5桁 の精度で 1 に等しい。

よって、ほとんどの場合において µ12 ≃ 1 とできる。

つまり、現実のほとんどのケースでは、TE波には Brewster角が存在せず、TM波には

tan θ =
√
ε12

を満たす θ なる Brewster角が存在する。

15



このとき

tan2 θ = ε12

より

cos2 θ =
1

tan2 θ + 1

=
1

ε12 + 1

ゆえに

cos θ =

√
1

ε12 + 1
(38)

である。また

sin2 θ = 1− cos2 θ

=
ε12

ε12 + 1

ゆえに

sin θ =

√
ε12

ε12 + 1
(39)

である。いっぽう、Snellの法則より

sinϕ =
c2
c1

sin θ

=

√
ε1 µ1√
ε2 µ2

sin θ

=
1

√
ε12 µ12

sin θ

であるが、いまは µ12 = 1 とおいているので

sinϕ =
1√
ε12

sin θ

=
1√
ε12

√
ε12

ε12 + 1

結局

sinϕ =

√
1

ε12 + 1
(40)

である。そして

cos2 ϕ = 1− sin2 ϕ

=
ε12

ε12 + 1

ゆえに

cosϕ =

√
ε12

ε12 + 1
(41)

である。

以上に得た (38) (39) (40) (41)式を使うと

sin
[
θ + ϕ

]
= sin θ cosϕ+ cos θ sinϕ

=

√
ε12

ε12 + 1
·
√

ε12
ε12 + 1

+

√
1

ε12 + 1
·
√

1

ε12 + 1

= 1

となり、 ( θ + ϕ ) =
π

2
が成り立っていることがわかる。これは、反射光の射線と透過光の射線とが互いに直交することを

意味する。
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11 反射による位相の反転

(30) (31)式より、 µ12 = 1 のとき、入射角に対して反射波の電場の p・s成分の振幅がどう変化するかをグラフで表すと、

下のようになる。図中の Es 、 Ep はそれぞれ E⊥
′ 、 E∥

′ のことであり、 Es (inc) 、 Ep (inc) はそれぞれ E⊥ 、 E∥ のこ

とである。
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 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90

E
s 

/ E
s 

(in
c)

θ (degree)

Amplitude of reflected TE wave

ε12 = 0.33
ε12 = 0.67
ε12 = 1.33
ε12 = 2.67

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90

E
p 

/ E
p 

(in
c)

θ (degree)

Amplitude of reflected TM wave

ε12 = 0.33
ε12 = 0.67
ε12 = 1.33
ε12 = 2.67

以下では、
E⊥

′

E⊥
や

E∥
′

E∥
、すなわち入射波の電場の振幅に対する反射波の電場の振幅の比のことを、「振幅反射比」と呼ぶ。

µ12 = 1 のとき、(30) (31)式や上のグラフより、 TE波 の振幅反射比について次のことが言える。

振幅反射比の符号は、 ε12 < 1 の場合に正で ε12 > 1 の場合に負である。これは、光学インピーダンスの小さい媒質から

大きい媒質への入射に伴っては（電場について）自由端反射が起こり、光学インピーダンスの大きい媒質から小さい媒質へ

の入射に伴っては（電場について）固定端反射が起こる、と解釈することができる。

そして、振幅反射比の絶対値は、 入射角 θ が 0 のときに最も小さく、 θ の増加にともなって徐々に大きくなり、最終的

に 1 に到達する。
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いっぽう、 TM波 の振幅反射比については、以下のことが言える。

振幅反射比は、 入射角 θ が 0 であれば、 ε12 < 1 の場合に正で ε12 > 1 の場合に負である。このことは TE波と同様で

ある。

ところが、 θ を 0 から徐々に増加させると、振幅反射比の絶対値が徐々に減少し、あるところで 0 となって、それを境に

符号が反転する。そしてそれ以降、ふたたび絶対値が増加し、最終的に 絶対値 1 に到達する。

この、符号が反転する θ が Brewster角である。

したがって、 TM波 に関して、次のように理解しなければならない。

振幅反射比の符号は、入射角が Brewster角より小さい範囲では、TE波と同様に、 ε12 < 1 の場合に正で ε12 > 1 の場合

に負である。しかし、入射角が Brewster角より大きい範囲では、それが逆転する。

なお、自由端反射・固定端反射という呼び方は、TM波の電場に対しては適用しにくいことを指摘しておく。

正の E∥

負の E∥ 正の E∥
′

負の E∥
′

正の E∥

負の E∥ 正の E∥
′

負の E∥
′

図を描いて詳しく想像するとわかる。上の図の左のような、入射角の小さい状況では、見てのとおり、
E∥

′

E∥
が正の場合を

自由端反射、負の場合を固定端反射と呼べそうである。ところが、右のような、入射角の大きい状況では、よく見てみると、

E∥
′

E∥
が負の場合を自由端反射、正の場合を固定端反射と呼べそうに思える。結局、TM波の電場に関しては、「自由端反射」

「固定端反射」という言葉の表す概念が曖昧なのである。

強いて言えば、電場の p成分（TM波の電場）を x成分と z 成分に分解して考えるならば、
E∥

′

E∥
が正の場合に x成分は

自由端反射で z 成分は固定端反射、
E∥

′

E∥
が負の場合に x成分は固定端反射で z 成分は自由端反射、と呼ぶことはできなく

もないだろう。

しかし、いずれにしても、「自由端」「固定端」のどちらと呼ぶのかという問題はさして重要でないということを理解する

とよい。ここで重要なのは、Brewster角を境に、TM波の反射波の電場の位相が反転することである。
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12 エネルギーの保存

境界面におけるエネルギーの保存を確かめる。

まず、入射波の Poyntingベクトル S を求める。(11) (12)式を用い、(10)式および
1

c1 µ1
=

√
ε1
µ1
であることを考慮に

入れて

TE波 （ E∥ = 0 ）

S = E ×H

=

 EyHz

0
−EyHx


=

√
ε1
µ1

E⊥
2

 sin θ
0

cos θ

 · sin2 [ω t− ω

c1
sin θ · x− ω

c1
cos θ · z

]

TM波 （ H∥ = 0 ）

S = E ×H

=

 −EzHy

0
ExHy


=

√
µ1

ε1
H⊥

2

 sin θ
0

cos θ

 · sin2 [ω t− ω

c1
sin θ · x− ω

c1
cos θ · z

]

である。

次に、反射波の Poyntingベクトル S′ を求める。(11) (12)式を用い、(30) (31)式の E⊥
′ 、 H⊥

′ および (21) (22)式の

δ′E 、 δ′M を代入し、(10)式および
1

c1 µ1
=

√
ε1
µ1
であることを考慮に入れて

TE波 （ E∥ = E∥
′ = 0 ）

S′ = E′ ×H ′

=

 Ey
′Hz

′

0
−Ey ′Hx

′


=

 µ12 cos θ −
√
ε12 µ12 − sin2 θ

µ12 cos θ +

√
ε12 µ12 − sin2 θ

2 √
ε1
µ1

E⊥
2

 sin θ
0

− cos θ

 · sin2 [ω t− ω

c1
sin θ · x+

ω

c1
cos θ · z

]

TM波 （ H∥ = H∥
′ = 0 ）

S′ = E′ ×H ′

=

 −Ez ′Hy
′

0
Ex

′Hy
′


=

 ε12 cos θ −
√
ε12 µ12 − sin2 θ

ε12 cos θ +

√
ε12 µ12 − sin2 θ

2 √
µ1

ε1
H⊥

2

 sin θ
0

− cos θ

 · sin2 [ω t− ω

c1
sin θ · x+

ω

c1
cos θ · z

]

である。
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さらに、透過波の Poyntingベクトル S′′ を求める。(11) (12)式を用い、(32) (33)式の E⊥
′′ 、 H⊥

′′ 、 δ′′E 、 δ′′M を

代入し、(10)式および
1

c2 µ2
=

√
ε2
µ2
であることを考慮に入れて

TE波 （ E∥ = E∥
′′ = 0 ）

S′′ = E′′ ×H ′′

=

 Ey
′′Hz

′′

0
−Ey ′′Hx

′′


=

 2µ12 cos θ

µ12 cos θ +

√
ε12 µ12 − sin2 θ

2 √
ε2
µ2

E⊥
2

 sinϕ
0

cosϕ

 · sin2 [ω t− ω

c2
sinϕ · x+

ω

c2
cosϕ · z

]

TM波 （ H∥ = H∥
′′ = 0 ）

S′′ = E′′ ×H ′′

=

 −Ez ′′Hy
′′

0
Ex

′′Hy
′′


=

 2 ε12 cos θ

ε12 cos θ +

√
ε12 µ12 − sin2 θ

2 √
µ2

ε2
H⊥

2

 sinϕ
0

cosϕ

 · sin2 [ω t− ω

c2
sinϕ · x+

ω

c2
cosϕ · z

]

である。

以上を使って、境界面上の 面積素片 dσ に出入りするエネルギーを考える。
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dσ へ Poyntingベクトル S の波が入射するとき、 dσ の法線と S との間の角を ψ とすれば、 dσ の S に垂直な面への

射影は dΣ = dσ cosψ で、 dΣ を単位時間あたり通過するエネルギーが dσ へ単位時間あたり入射する。すなわち、 dσ へ

単位時間あたり入射するエネルギーは |S| dΣ = |S| dσ cosψ である。 |S| cosψ が |Sz| に等しいことに留意すると、結局、
dσ へ単位時間あたり入射するエネルギーは、 |Sz| dσ であると言える。

よって、境界面上は z = 0 であることを考慮に入れて、 dσ へ単位時間あたり入射する入射波のエネルギーが

TE波 ∣∣Sz (z=0)

∣∣ dσ = cos θ

√
ε1
µ1

E⊥
2 sin2

[
ω t− ω

c1
sin θ · x

]
dσ

TM波 ∣∣Sz (z=0)

∣∣ dσ = cos θ

√
µ1

ε1
H⊥

2 sin2
[
ω t− ω

c1
sin θ · x

]
dσ

であり、 dσ から単位時間あたり放射される反射波のエネルギーが

TE波 ∣∣∣Sz ′(z=0)

∣∣∣ dσ =

 µ12 cos θ −
√
ε12 µ12 − sin2 θ

µ12 cos θ +

√
ε12 µ12 − sin2 θ

2

cos θ

√
ε1
µ1

E⊥
2 sin2

[
ω t− ω

c1
sin θ · x

]
dσ

TM波 ∣∣∣Sz ′(z=0)

∣∣∣ dσ =

 ε12 cos θ −
√
ε12 µ12 − sin2 θ

ε12 cos θ +

√
ε12 µ12 − sin2 θ

2

cos θ

√
µ1

ε1
H⊥

2 sin2
[
ω t− ω

c1
sin θ · x

]
dσ

であることが導かれる。

dσ から単位時間あたり放射される透過波のエネルギーも同様だが、Snellの法則によって ϕ を消去できる（(28) (29)式）

ことに注意すると

TE波∣∣∣Sz ′′(z=0)

∣∣∣ dσ =

 2µ12 cos θ

µ12 cos θ +

√
ε12 µ12 − sin2 θ

2

cosϕ

√
ε2
µ2

E⊥
2 sin2

[
ω t− ω

c2
sinϕ · x

]
dσ

=

 2µ12 cos θ

µ12 cos θ +

√
ε12 µ12 − sin2 θ

2 √
1− 1

ε12 µ12
sin2 θ

√
ε12
µ12

√
ε1
µ1

E⊥
2 sin2

[
ω t− ω

c1
sin θ · x

]
dσ

TM波∣∣∣Sz ′′(z=0)

∣∣∣ dσ =

 2 ε12 cos θ

ε12 cos θ +

√
ε12 µ12 − sin2 θ

2

cosϕ

√
µ2

ε2
H⊥

2 sin2
[
ω t− ω

c2
sinϕ · x

]
dσ

=

 2 ε12 cos θ

ε12 cos θ +

√
ε12 µ12 − sin2 θ

2 √
1− 1

ε12 µ12
sin2 θ

√
µ12

ε12

√
µ1

ε1
H⊥

2 sin2
[
ω t− ω

c1
sin θ · x

]
dσ

となる。

これらより ∣∣Sz (z=0)

∣∣ dσ =
∣∣∣Sz ′(z=0)

∣∣∣ dσ +
∣∣∣Sz ′′(z=0)

∣∣∣ dσ (42)

が示されれば、境界面上のあらゆる点においてエネルギーの保存が成り立っていることになる。
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TE波

(42)式の 3つの項は共通因子

√
ε1
µ1

E⊥
2 sin2

[
ω t− ω

c1
sin θ · x

]
dσ を持つので、それで

∣∣Sz (z=0)

∣∣ dσ 、∣∣∣Sz ′(z=0)

∣∣∣ dσ 、∣∣∣Sz ′′(z=0)

∣∣∣ dσ を割ったものをそれぞれ s 、 s′ 、 s′′ とおけば、 s = s′ + s′′ の成立が (42)式の成立と同等である。

s′ + s′′ =

 µ12 cos θ −
√
ε12 µ12 − sin2 θ

µ12 cos θ +

√
ε12 µ12 − sin2 θ

2

cos θ +

 2µ12 cos θ

µ12 cos θ +

√
ε12 µ12 − sin2 θ

2 √
1− 1

ε12 µ12
sin2 θ

√
ε12
µ12

=
µ12

2 cos2 θ + ε12 µ12 − sin2 θ − 2µ12 cos θ

√
ε12 µ12 − sin2 θ(

µ12 cos θ +

√
ε12 µ12 − sin2 θ

)2 cos θ

+
4µ12

2 cos2 θ(
µ12 cos θ +

√
ε12 µ12 − sin2 θ

)2 √1− 1

ε12 µ12
sin2 θ

√
ε12
µ12

=
µ12

2 cos2 θ + ε12 µ12 − sin2 θ − 2µ12 cos θ

√
ε12 µ12 − sin2 θ(

µ12 cos θ +

√
ε12 µ12 − sin2 θ

)2 cos θ +
4µ12 cos θ

√
ε12 µ12 − sin2 θ(

µ12 cos θ +

√
ε12 µ12 − sin2 θ

)2 cos θ

= cos θ

= s

となる。ゆえに、TE波について、境界面上のあらゆる点においてエネルギーの保存の成り立っていることが確かめられる。

TM波

(42)式の 3つの項は共通因子

√
µ1

ε1
H⊥

2 sin2
[
ω t− ω

c1
sin θ · x

]
dσ を持つので、それで

∣∣Sz (z=0)

∣∣ dσ 、∣∣∣Sz ′(z=0)

∣∣∣ dσ 、∣∣∣Sz ′′(z=0)

∣∣∣ dσ を割ったものをそれぞれ s 、 s′ 、 s′′ とおけば、 s = s′ + s′′ の成立が (42)式の成立と同等である。

s′ + s′′ =

 ε12 cos θ −
√
ε12 µ12 − sin2 θ

ε12 cos θ +

√
ε12 µ12 − sin2 θ

2

cos θ +

 2 ε12 cos θ

ε12 cos θ +

√
ε12 µ12 − sin2 θ

2 √
1− 1

ε12 µ12
sin2 θ

√
µ12

ε12

=
ε12

2 cos2 θ + ε12 µ12 − sin2 θ − 2 ε12 cos θ

√
ε12 µ12 − sin2 θ(

ε12 cos θ +

√
ε12 µ12 − sin2 θ

)2 cos θ

+
4 ε12

2 cos2 θ(
ε12 cos θ +

√
ε12 µ12 − sin2 θ

)2 √1− 1

ε12 µ12
sin2 θ

√
µ12

ε12

=
ε12

2 cos2 θ + ε12 µ12 − sin2 θ − 2 ε12 cos θ

√
ε12 µ12 − sin2 θ(

ε12 cos θ +

√
ε12 µ12 − sin2 θ

)2 cos θ +
4 ε12 cos θ

√
ε12 µ12 − sin2 θ(

ε12 cos θ +

√
ε12 µ12 − sin2 θ

)2 cos θ

= cos θ

= s

となる。ゆえに、TM波について、境界面上のあらゆる点においてエネルギーの保存の成り立っていることが確かめられる。
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13 全反射の場合

ところで、11 節のグラフによれば、振幅反射比の絶対値が 1 になるのは、 ε12 > 1 の場合には θ =
π

2
においてだが、

ε12 < 1 の場合には θ <
π

2
においてである。後者の場合に振幅反射比の絶対値が 1 になる θ は、ほかでもない、臨界角で

ある。(30) (31)式からもそのことは確かめられる。

θ が臨界角よりも大きい、すなわち全反射の場合の振幅反射比は、11節のグラフには描かれていない。それは (30) (31)式

から計算できないからであるが、その絶対値が 1 になるであろうことは、エネルギーの保存を考えれば、容易に想像できる。

しかしながら、その符号が正なのか負なのかは、単純には予想がつかない。さらに言えば反射波の位相がどうなるのかも

よくわからない。そこで、それらを知るべく、全反射の場合の反射波の電場を、位相も含めて理論的に導く。

原理的には、5節に述べたとおり、媒質の境界での境界条件により定まると考えられる。しかし、5節の議論では、「透過

側の媒質中に（ 屈折角 θ の方向へ進む）平面波が生じる」という仮定から導かれる関係、すなわち (10)式（の透過波に関

する部分）を使っている。この仮定が全反射の場合には成り立たなくなることを考慮しなくてはならない。

13.1 入射波と反射波の電場と磁場

まず、入射波と反射波は、これまでの仮定と変わらず、 速さ c1 で伝わる 振動数 ω の平面波であり、 ci と cr も 2節に

記した (6) (7)式であるとする。

つまり、入射波と反射波の電場と磁場は、4節で書き下した (11) (12)式（のうちの入射波と反射波に関するもの）である。

13.2 境界条件

媒質の境界での電場・磁場の境界条件は、変わらず成り立ち

• 電場の、境界面に平行な成分が連続

• 磁場の、境界面に平行な成分が連続

• 電束密度の、境界面に垂直な成分が連続

• 磁束密度の、境界面に垂直な成分が連続

である。

13.3 境界面上での入射側の媒質中の電場・磁場の接線成分と電束密度・磁束密度の法線成分

(11) (12)式のうちの入射波と反射波に関するものに z = 0 を代入すると

TE波

Ey (z=0) = E⊥ sin

[
ω

(
t− sin θ

c1
x

)]
Hx (z=0) = H∥ cos θ sin

[
ω

(
t− sin θ

c1
x

)]
Hz (z=0) = −H∥ sin θ sin

[
ω

(
t− sin θ

c1
x

)]
Ey

′
(z=0) = E⊥

′ sin

[
ω

(
t− sin θ

c1
x

)
+ δ′E

]
Hx

′
(z=0) = H∥

′ cos θ sin

[
ω

(
t− sin θ

c1
x

)
+ δ′E

]
Hz

′
(z=0) = H∥

′ sin θ sin

[
ω

(
t− sin θ

c1
x

)
+ δ′E

]

TM波

Ex (z=0) = E∥ cos θ sin

[
ω

(
t− sin θ

c1
x

)]
Ez (z=0) = −E∥ sin θ sin

[
ω

(
t− sin θ

c1
x

)]
Hy (z=0) = H⊥ sin

[
ω

(
t− sin θ

c1
x

)]
Ex

′
(z=0) = E∥

′ cos θ sin

[
ω

(
t− sin θ

c1
x

)
+ δ′M

]
Ez

′
(z=0) = E∥

′ sin θ sin

[
ω

(
t− sin θ

c1
x

)
+ δ′M

]
Hy

′
(z=0) = H⊥

′ sin

[
ω

(
t− sin θ

c1
x

)
+ δ′M

]

である。これらより、境界面上での入射側の媒質中の（境界条件にかかわる）場の量は、以下のようになる。
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電場の x成分が

Ex (z=0) + Ex
′
(z=0)

= E∥ cos θ sin

[
ω t− ω

c1
sin θ · x

]
+ E∥

′ cos θ sin

[
ω t− ω

c1
sin θ · x+ δ′M

]
=

(
E∥ sin

[
ω t− ω

c1
sin θ · x

]
+E∥

′ sin

[
ω t− ω

c1
sin θ · x

]
cos δ′M + E∥

′ cos

[
ω t− ω

c1
sin θ · x

]
sin δ′M

)
cos θ

=

((
E∥ + E∥

′ cos δ′M
)
sin

[
ω t− ω

c1
sin θ · x

]
+ E∥

′ sin δ′M cos

[
ω t− ω

c1
sin θ · x

])
cos θ

=

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ · sin
[
ω t− ω

c1
sin θ · x+ ξe

]
(43)

ただし

sin ξe =
E∥

′ sin δ′M√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M

, cos ξe =
E∥ + E∥

′ cos δ′M√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M

電場の y 成分が

Ey (z=0) + Ey
′
(z=0)

= E⊥ sin

[
ω t− ω

c1
sin θ · x

]
+ E⊥

′ sin

[
ω t− ω

c1
sin θ · x+ δ′E

]
= E⊥ sin

[
ω t− ω

c1
sin θ · x

]
+ E⊥

′ sin

[
ω t− ω

c1
sin θ · x

]
cos δ′E + E⊥

′ cos

[
ω t− ω

c1
sin θ · x

]
sin δ′E

=
(
E⊥ + E⊥

′ cos δ′E
)
sin

[
ω t− ω

c1
sin θ · x

]
+ E⊥

′ sin δ′E cos

[
ω t− ω

c1
sin θ · x

]
=

√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E sin

[
ω t− ω

c1
sin θ · x+ ηe

]
(44)

ただし

sin ηe =
E⊥

′ sin δ′E√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E

, cos ηe =
E⊥ + E⊥

′ cos δ′E√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E

電束密度（入射波の電束密度を D 、反射波の電束密度を D′ とする）の z 成分が

Dz (z=0) +Dz
′
(z=0)

= ε1Ez (z=0) + ε1Ez
′
(z=0)

= −ε1E∥ sin θ sin

[
ω t− ω

c1
sin θ · x

]
+ ε1E∥

′ sin θ sin

[
ω t− ω

c1
sin θ · x+ δ′M

]
= ε1

(
−E∥ sin

[
ω t− ω

c1
sin θ · x

]
+E∥

′ sin

[
ω t− ω

c1
sin θ · x

]
cos δ′M + E∥

′ cos

[
ω t− ω

c1
sin θ · x

]
sin δ′M

)
sin θ

= ε1

((
−E∥ + E∥

′ cos δ′M
)
sin

[
ω t− ω

c1
sin θ · x

]
+ E∥

′ sin δ′M cos

[
ω t− ω

c1
sin θ · x

])
sin θ

= ε1

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin θ · sin
[
ω t− ω

c1
sin θ · x+ ζe

]
(45)

ただし

sin ζe =
E∥

′ sin δ′M√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M

, cos ζe =
−E∥ + E∥

′ cos δ′M√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M

である。
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磁場の x成分が

Hx (z=0) +Hx
′
(z=0)

= H∥ cos θ sin

[
ω t− ω

c1
sin θ · x

]
+H∥

′ cos θ sin

[
ω t− ω

c1
sin θ · x+ δ′E

]
=

(
H∥ sin

[
ω t− ω

c1
sin θ · x

]
+H∥

′ sin

[
ω t− ω

c1
sin θ · x

]
cos δ′E +H∥

′ cos

[
ω t− ω

c1
sin θ · x

]
sin δ′E

)
cos θ

=

((
H∥ +H∥

′ cos δ′E
)
sin

[
ω t− ω

c1
sin θ · x

]
+H∥

′ sin δ′E cos

[
ω t− ω

c1
sin θ · x

])
cos θ

=

√
H∥

2 +H∥
′2 + 2H∥H∥

′ cos δ′E cos θ · sin
[
ω t− ω

c1
sin θ · x+ ξm

]
(46)

ただし

sin ξm =
H∥

′ sin δ′E√
H∥

2 +H∥
′2 + 2H∥H∥

′ cos δ′E

, cos ξm =
H∥ +H∥

′ cos δ′E√
H∥

2 +H∥
′2 + 2H∥H∥

′ cos δ′E

磁場の y 成分が

Hy (z=0) +Hy
′
(z=0)

= H⊥ sin

[
ω t− ω

c1
sin θ · x

]
+H⊥

′ sin

[
ω t− ω

c1
sin θ · x+ δ′M

]
= H⊥ sin

[
ω t− ω

c1
sin θ · x

]
+H⊥

′ sin

[
ω t− ω

c1
sin θ · x

]
cos δ′M +H⊥

′ cos

[
ω t− ω

c1
sin θ · x

]
sin δ′M

=
(
H⊥ +H⊥

′ cos δ′M
)
sin

[
ω t− ω

c1
sin θ · x

]
+H⊥

′ sin δ′M cos

[
ω t− ω

c1
sin θ · x

]
=

√
H⊥

2 +H⊥
′2 + 2H⊥H⊥

′ cos δ′M sin

[
ω t− ω

c1
sin θ · x+ ηm

]
(47)

ただし

sin ηm =
H⊥

′ sin δ′M√
H⊥

2 +H⊥
′2 + 2H⊥H⊥

′ cos δ′M

, cos ηm =
H⊥ +H⊥

′ cos δ′M√
H⊥

2 +H⊥
′2 + 2H⊥H⊥

′ cos δ′M

磁束密度（入射波の磁束密度を B 、反射波の磁束密度を B′ とする）の z 成分が

Bz (z=0) +Bz
′
(z=0)

= µ1Hz (z=0) + µ1Hz
′
(z=0)

= −µ1H∥ sin θ sin

[
ω t− ω

c1
sin θ · x

]
+ µ1H∥

′ sin θ sin

[
ω t− ω

c1
sin θ · x+ δ′E

]
= µ1

(
−H∥ sin

[
ω t− ω

c1
sin θ · x

]
+H∥

′ sin

[
ω t− ω

c1
sin θ · x

]
cos δ′E +H∥

′ cos

[
ω t− ω

c1
sin θ · x

]
sin δ′E

)
sin θ

= µ1

((
−H∥ +H∥

′ cos δ′E
)
sin

[
ω t− ω

c1
sin θ · x

]
+H∥

′ sin δ′E cos

[
ω t− ω

c1
sin θ · x

])
sin θ

= µ1

√
H∥

2 +H∥
′2 − 2H∥H∥

′ cos δ′E sin θ · sin
[
ω t− ω

c1
sin θ · x+ ζm

]
(48)

ただし

sin ζm =
H∥

′ sin δ′E√
H∥

2 +H∥
′2 − 2H∥H∥

′ cos δ′E

, cos ζm =
−H∥ +H∥

′ cos δ′E√
H∥

2 +H∥
′2 − 2H∥H∥

′ cos δ′E

である。
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13.4 境界面上での透過側の媒質中の電場と磁場

透過側の媒質中の電束密度を D′′ 、磁束密度を B′′ として、境界条件は

Ex
′′
(z=0) = Ex (z=0) + Ex

′
(z=0)

Ey
′′
(z=0) = Ey (z=0) + Ey

′
(z=0)

Dz
′′
(z=0) = Dz (z=0) +Dz

′
(z=0)

Hx
′′
(z=0) = Hx (z=0) +Hx

′
(z=0)

Hy
′′
(z=0) = Hy (z=0) +Hy

′
(z=0)

Bz
′′
(z=0) = Bz (z=0) +Bz

′
(z=0)

である。

(43) (44) (45) (46) (47) (48)式とこの境界条件、さらに

Ez
′′ =

1

ε2
Dz

′′ , Hz
′′ =

1

µ2
Bz

′′

であることを使うと、境界面上での透過側の媒質中の電場と磁場が求まる。

電場は

Ex
′′
(z=0) =

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ · sin
[
ω t− ω

c1
sin θ · x+ ξe

]
(49)

Ey
′′
(z=0) =

√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E sin

[
ω t− ω

c1
sin θ · x+ ηe

]
(50)

Ez
′′
(z=0) =

ε1
ε2

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin θ · sin
[
ω t− ω

c1
sin θ · x+ ζe

]
(51)

ただし

sin ξe =
E∥

′ sin δ′M√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M

, cos ξe =
E∥ + E∥

′ cos δ′M√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M

(52)

sin ηe =
E⊥

′ sin δ′E√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E

, cos ηe =
E⊥ + E⊥

′ cos δ′E√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E

(53)

sin ζe =
E∥

′ sin δ′M√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M

, cos ζe =
−E∥ + E∥

′ cos δ′M√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M

(54)

である。

磁場は

Hx
′′
(z=0) =

√
H∥

2 +H∥
′2 + 2H∥H∥

′ cos δ′E cos θ · sin
[
ω t− ω

c1
sin θ · x+ ξm

]
(55)

Hy
′′
(z=0) =

√
H⊥

2 +H⊥
′2 + 2H⊥H⊥

′ cos δ′M sin

[
ω t− ω

c1
sin θ · x+ ηm

]
(56)

Hz
′′
(z=0) =

µ1

µ2

√
H∥

2 +H∥
′2 − 2H∥H∥

′ cos δ′E sin θ · sin
[
ω t− ω

c1
sin θ · x+ ζm

]
(57)

ただし

sin ξm =
H∥

′ sin δ′E√
H∥

2 +H∥
′2 + 2H∥H∥

′ cos δ′E

, cos ξm =
H∥ +H∥

′ cos δ′E√
H∥

2 +H∥
′2 + 2H∥H∥

′ cos δ′E

(58)

sin ηm =
H⊥

′ sin δ′M√
H⊥

2 +H⊥
′2 + 2H⊥H⊥

′ cos δ′M

, cos ηm =
H⊥ +H⊥

′ cos δ′M√
H⊥

2 +H⊥
′2 + 2H⊥H⊥

′ cos δ′M

(59)

sin ζm =
H∥

′ sin δ′E√
H∥

2 +H∥
′2 − 2H∥H∥

′ cos δ′E

, cos ζm =
−H∥ +H∥

′ cos δ′E√
H∥

2 +H∥
′2 − 2H∥H∥

′ cos δ′E

(60)

である。
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13.5 この先の考え方

境界面上での透過側の媒質中の電場と磁場を E⊥ 、 E∥ 、 H⊥ 、 H∥ 、 E⊥
′ 、 E∥

′ 、 H⊥
′ 、 H∥

′ 、 δ′E 、 δ′M で表す

式が得られた。

しかし、これらは、境界条件だけから導き出されたものであり、透過側の媒質において誘電率と透磁率が入射側の媒質と

は異なるという条件を反映していない。

その条件に依存する関係がMaxwell方程式によって Ex
′′ 、 Ey

′′ 、 Ez
′′ 、 Hx

′′ 、 Hy
′′ 、 Hz

′′ の間に要請されるため、

(49) (50) (51) (55) (56) (57)式に含まれている量の間に制約が生じて、 E⊥
′ 、 E∥

′ 、 H⊥
′ 、 H∥

′ 、 δ′E 、 δ′M が定まる

のだと考えられる。

そこで、次のような考え方で以て、 E⊥
′ 、 E∥

′ 、 H⊥
′ 、 H∥

′ 、 δ′E 、 δ′M を求める。

まず、(49) (50) (51)式の Ex
′′
(z=0) 、 Ey

′′
(z=0) 、 Ez

′′
(z=0) から、透過側の媒質中の条件の下でMaxwell方程式を使って

Hx
′′
(z=0) 、 Hy

′′
(z=0) 、 Hz

′′
(z=0) を求める。それらの結果が (55) (56) (57)式に等しいとおけば、方程式が得られるから、

その方程式を解いて、目的の量を求める。

すると、そのためには、Maxwell方程式 (1) (2)式を使って、透過側の媒質中における電場から磁場を導くことが必要に

なる。それには、(1) (2)式より、電場を空間で微分し、さらに時間で積分することになる。この「電場を空間で微分する」

という計算をするためには、透過側の媒質中での 電場 E′′ を境界面上に限らず r の関数として知っていなければならない。

よって、それを求めることも必要となる。

以上より、この先の手順は、次のようにすればよいと考えられる。

• 透過側の媒質中でMaxwell方程式を満たし、しかも (49) (50) (51)式を満たすような、境界面上に限らない r の関数

としての E′′ を求める。

• 求めた E′′ から、Maxwell方程式を使い、 r の関数としての H ′′ を求める。（この H ′′ は H⊥ 、H∥ 、H⊥
′ 、H∥

′

を用いず E⊥ 、 E∥ 、 E⊥
′ 、 E∥

′ を用いた表現になる。）

• 求めた H ′′ に z = 0 を代入し、 Hx
′′
(z=0) 、 Hy

′′
(z=0) 、 Hz

′′
(z=0) を求める。

• 求めた Hx
′′
(z=0) 、 Hy

′′
(z=0) 、 Hz

′′
(z=0) が (55) (56) (57)式に等しいとおき、方程式とする。（(55) (56) (57)式に

含まれている H⊥ 、 H∥ 、 H⊥
′ 、 H∥

′ は (10)式を使って消去し E⊥ 、 E∥ 、 E⊥
′ 、 E∥

′ に置き換える。）

• 導いた方程式を解き、 E⊥
′ 、 E∥

′ 、 δ′E 、 δ′M を求める。
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13.6 透過側の媒質中での電場

境界面上に限らない r の関数としての E′′ を求める。

どのような形の式になるのか不明であるが、ひとまず、仮に (3) 式の形を仮定する。現実には透過側の媒質中に平面波

は生じないので、それが境界条件 (49) (50) (51)式を満たすと仮定しても、物理的には破綻する。具体的には ct の z 成分

が複素数になってしまい物理的な意味を持たない（ように見える）。しかし、それでも、数学的には (3) 式の形の関数なら

Maxwell方程式を満たすことは確かなので、ひとまず複素数を含んでも (3)式の形であるような解を求めてみて、その中に

物理的意味のある解が隠れていないかどうかを探すことにする。

そこで

Ex
′′ = E0x

′′ sin

[
ω

(
t− r · ct

c2
2

)
+ δ′′x

]
Ey

′′ = E0y
′′ sin

[
ω

(
t− r · ct

c2
2

)
+ δ′′y

]
Ez

′′ = E0z
′′ sin

[
ω

(
t− r · ct

c2
2

)
+ δ′′z

]
（ δ も成分により異なると仮定する）すなわち

Ex
′′ = E0x

′′ sin

[
ω t− ω ctx x

c2
2 − ω cty y

c2
2 − ω ctz z

c2
2 + δ′′x

]
(61)

Ey
′′ = E0y

′′ sin

[
ω t− ω ctx x

c2
2 − ω cty y

c2
2 − ω ctz z

c2
2 + δ′′y

]
(62)

Ez
′′ = E0z

′′ sin

[
ω t− ω ctx x

c2
2 − ω cty y

c2
2 − ω ctz z

c2
2 + δ′′z

]
(63)

とおく。ただし、(61) (62) (63)式は

c2 =
√
ctx

2 + cty
2 + ctz

2 (64)

が成り立っていてかつ c2 =
1

√
ε2 µ2

である場合にMaxwell方程式を満たすということに留意する。

最初に、x成分 (61)式について考察し、 E0x
′′ 、 ctx 、 cty 、 ctz 、 δ′′x を定める。 ctx 、 cty 、 ctz はいったん定めれば

(62) (63)式でも共通なので、その後に E0y
′′ 、 δ′′y 、 E0z

′′ 、 δ′′z を定めるのはより容易いであろう。

境界条件 (49)式を成り立たせることを条件として課す。(61)式に z = 0 を代入した

Ex
′′
(z=0) = E0x

′′ sin

[
ω t− ω ctx x

c2
2 − ω cty y

c2
2 + δ′′x

]
が (49)式に等しいとすると

E0x
′′ =

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ , ctx =
c2

2

c1
sin θ , cty = 0 , δ′′x = ξe

と定まる。この結果を使うと、(64)式より

ctz
2 = c2

2

(
1− c2

2

c1
2 sin2 θ

)
となるが、全反射が起こっている場合には

c2
c1

sin θ > 1 が成立しているので、 ctz は虚数になってしまう。

ひとまずそれを認めることにすると、虚数単位を i として

ctz = ±i c2

√
c2

2

c1
2 sin2 θ − 1

である。
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これで、Maxwell方程式を満たす Ex
′′ の解のうち、全反射の場合に境界条件を満たすもの（特殊解）として

Ex
′′
par∓ =

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ sin

ω t− ω

c1
sin θ · x∓ i ω

√
sin2 θ

c1
2 −

1

c2
2 · z + ξe


の 2つ（ Ex

′′
par− と Ex

′′
par+ ）が存在することが導かれた。実際には、両者の 線形結合

Ex
′′
par = AEx

′′
par− +BEx

′′
par+

= A

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ sin

ω t− ω

c1
sin θ · x− i ω

√
sin2 θ

c1
2 −

1

c2
2 · z + ξe


+B

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ sin

ω t− ω

c1
sin θ · x+ i ω

√
sin2 θ

c1
2 −

1

c2
2 · z + ξe


（ A 、 B は任意の定数）もMaxwell方程式を満たし、 A+B = 1 という条件を課せば、境界条件も満たす。

Ex
′′
par は、変形すると

Ex
′′
par =

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ

×

A sin

ω t− ω

c1
sin θ · x− i ω

√
sin2 θ

c1
2 −

1

c2
2 · z + ξe


+B sin

ω t− ω

c1
sin θ · x+ i ω

√
sin2 θ

c1
2 −

1

c2
2 · z + ξe


=

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ

×

A sin

[
ω t− ω

c1
sin θ · x+ ξe

]
cos

 i ω
√

sin2 θ

c1
2 −

1

c2
2 · z


−A cos

[
ω t− ω

c1
sin θ · x+ ξe

]
sin

 i ω
√

sin2 θ

c1
2 −

1

c2
2 · z


+B sin

[
ω t− ω

c1
sin θ · x+ ξe

]
cos

 i ω
√

sin2 θ

c1
2 −

1

c2
2 · z


+B cos

[
ω t− ω

c1
sin θ · x+ ξe

]
sin

 i ω
√

sin2 θ

c1
2 −

1

c2
2 · z


=

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ

×

(A+B
)
sin

[
ω t− ω

c1
sin θ · x+ ξe

]
cos

 i ω
√

sin2 θ

c1
2 −

1

c2
2 · z


+
(
B −A

)
cos

[
ω t− ω

c1
sin θ · x+ ξe

]
sin

 i ω
√

sin2 θ

c1
2 −

1

c2
2 · z


となる。 実数 ψ に対して cos

[
i ψ
]
=
e−ψ + eψ

2
= coshψ 、 sin

[
i ψ
]
=
e−ψ − eψ

2 i
= i sinhψ であるから、これは一般

に複素数である。
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しかしながら、Ex
′′
par には、実数の解も含まれている。その 1つは A = B とした場合であって、A+B = 1 も考慮して

Ex
′′
par (A=B) =

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ sin

[
ω t− ω

c1
sin θ · x+ ξe

]
cos

 i ω
√

sin2 θ

c1
2 −

1

c2
2 · z


=

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ sin

[
ω t− ω

c1
sin θ · x+ ξe

]
cosh

ω
√

sin2 θ

c1
2 −

1

c2
2 · z


である。これが、Maxwell方程式を満たし、境界条件 (49)式も満たす、実数の Ex

′′ の解（の 1つ）である。

この Ex
′′
par (A=B) が物理的な意味を持つことが期待されるが、残念ながら、それに対する答えは「否」である。なぜなら、

z の増加にともなって cosh

ω
√

sin2 θ

c1
2 −

1

c2
2 · z

 は単調に増加し、 z →∞ の極限で 無限大 に発散するからである。そ

れは透過側の媒質中に境界面から離れるほど振幅が増大するような振動電場が発生するということであり、あり得ないこと

である。よって、 Ex
′′
par (A=B) を実際の現象を表す式と考えることはできない。

続けて、次のように考える。

Maxwell 方程式を満たす Ex
′′ の解は、境界条件を満たさないものならば、まだ無数にある。それらのうち境界面で

Ex
′′ = 0 となるもの（「境界零解」と呼ぶことにする）を Ex

′′
par (A=B) に加えたものも、やはり、 Ex

′′
par (A=B) と同じく、

Maxwell方程式と境界条件の両方を満たす。そこで、 Ex
′′
par (A=B) に適当な境界零解を加えた関数で、物理的な意味を持つ

Ex
′′ の解がないかどうかを探す。

次のような関数が見つかる。

境界零解として、次の 2つの関数（ Ex
′′
cos− と Ex

′′
cos+ ）の 線形結合 Ex

′′
hom =

i

2
Ex

′′
cos− −

i

2
Ex

′′
cos+ を選ぶ。

Ex
′′
cos∓ =

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ cos

ω t− ω

c1
sin θ · x∓ i ω

√
sin2 θ

c1
2 −

1

c2
2 · z + ξe


cos は sin の位相をずらしただけの関数であることに留意すると、 Ex

′′
cos− と Ex

′′
cos+ はどちらも (61) 式と同じ形でかつ

(64)式を満たしており、ゆえにMaxwell方程式を満たすと言える。これらを使って得る

Ex
′′
hom =

i

2
Ex

′′
cos− −

i

2
Ex

′′
cos+

= −
√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ sin

[
ω t− ω

c1
sin θ · x+ ξe

]
sinh

ω
√

sin2 θ

c1
2 −

1

c2
2 · z


は、 z = 0 で 0 となる。

この 境界零解 Ex
′′
hom をさきほどの 特殊解 Ex

′′
par (A=B) に加えた関数を Ex

′′ とすると

Ex
′′ = Ex

′′
par (A=B) + Ex

′′
hom

=

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ sin

[
ω t− ω

c1
sin θ · x+ ξe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z

 (65)

である。この Ex
′′ は

• Maxwell方程式を満たし

• 境界条件を満たし

• 値が実数であり

• z の増加にともなって 0 に収束する

ような関数である。これは、現実の電場の式である可能性のある関数である。

これを、全反射が起こっている場合の透過側の媒質中の電場の x成分を表す式とする。

なお、(65)式で表される x成分（および、以下に述べる y 成分・z 成分）を持つような電場が実際に生じることは、実験

により確かめられている。

30



次に、y 成分 (62)式について考察し、 E0y
′′ 、 δ′′y を定める。

境界条件 (50)式を成り立たせることを条件として課し、(62)式に z = 0 を代入した式が (50)式に等しいとすることから

出発して、x成分と同様の議論を展開すると、 電場の y 成分 Ey
′′ について

E0y
′′ =

√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E , δ′′y = ηe

Ey
′′ =

√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E sin

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z

 (66)

が得られる。

最後に、z 成分 (63)式について考察し、 E0z
′′ 、 δ′′z を定める。

境界条件 (51)式を成り立たせることを条件として課し、(63)式に z = 0 を代入した式が (51)式に等しいとすることから

出発して、x成分と同様の議論を展開すると、 電場の z 成分 Ez
′′ について

E0z
′′ =

ε1
ε2

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin θ , δ′′z = ζe

Ez
′′ =

ε1
ε2

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin θ sin

[
ω t− ω

c1
sin θ · x+ ζe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z

 (67)

が得られる。

以上で、透過側の媒質中の 電場 E′′ が得られた。3つの成分をまとめると、こうなる。

E′′ =



√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ sin

[
ω t− ω

c1
sin θ · x+ ξe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E sin

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


ε1
ε2

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin θ sin

[
ω t− ω

c1
sin θ · x+ ζe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z




(68)
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13.7 透過側の媒質中での磁場

Maxwell方程式 (1)式を使って、 E′′ から、 r の関数としての H ′′ を求める。

(68)式より ∇×E′′ を計算すると(
∇×E′′)

x

= ω

√
sin2 θ

c1
2 −

1

c2
2

√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E sin

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


(
∇×E′′)

y

= −ω

√
sin2 θ

c1
2 −

1

c2
2

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ sin

[
ω t− ω

c1
sin θ · x+ ξe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


+
ε1
ε2

ω

c1
sin θ

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin θ cos

[
ω t− ω

c1
sin θ · x+ ζe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


(
∇×E′′)

z

= − ω
c1

sin θ

√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E cos

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


となる。

(1)式より ∇×E′′ が −µ2
∂H ′′

∂t
に等しいので H ′′ = − 1

µ2

∫
∇×E′′ dt （積分は r を定数とみなして行う）である。

積分定数は静磁場成分なので 0 とすると

Hx
′′

=
1

µ2

√
sin2 θ

c1
2 −

1

c2
2

√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E cos

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


(69)

Hy
′′

= − 1

µ2

√
sin2 θ

c1
2 −

1

c2
2

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ

× cos

[
ω t− ω

c1
sin θ · x+ ξe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


−ε1
ε2

1

c1 µ2
sin θ

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin θ sin

[
ω t− ω

c1
sin θ · x+ ζe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


(70)

Hz
′′

=
1

c1 µ2
sin θ

√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E sin

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


(71)

である。

以上で、透過側の媒質中の 磁場 H ′′ が得られた。
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13.8 冗長な変数の消去、境界条件の式の整理

13.4で羅列した境界条件の式 (49) (50) (51) (55) (56) (57)式から余計な文字を消去し、見やすく整理しておく。

第 1に、(55) (56) (57)式の H⊥ 、 H∥ 、 H⊥
′ 、 H∥

′ に (10)式を代入して E⊥ 、 E∥ 、 E⊥
′ 、 E∥

′ に置き換える。

(55) (58)式に (10)式の H∥ = − E⊥

c1 µ1
、 H∥

′ =
E⊥

′

c1 µ1
を代入すると

Hx
′′
(z=0) =

1

c1 µ1

√
E⊥

2 + E⊥
′2 − 2E⊥E⊥

′ cos δ′E cos θ · sin
[
ω t− ω

c1
sin θ x+ ξm

]
(72)

sin ξm =
E⊥

′ sin δ′E√
E⊥

2 + E⊥
′2 − 2E⊥E⊥

′ cos δ′E

, cos ξm =
−E⊥ + E⊥

′ cos δ′E√
E⊥

2 + E⊥
′2 − 2E⊥E⊥

′ cos δ′E

(73)

である。

(56) (59)式に (10)式の H⊥ =
E∥

c1 µ1
、 H⊥

′ = −
E∥

′

c1 µ1
を代入すると

Hy
′′
(z=0) =

1

c1 µ1

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin

[
ω t− ω

c1
sin θ x+ ηm

]
(74)

sin ηm =
−E∥

′ sin δ′M√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M

, cos ηm =
E∥ − E∥

′ cos δ′M√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M

(75)

である。

ここで、(75)式を (54)式と比較すると
ζe = ηm + π (76)

であることがわかる。

(57) (60)式に (10)式の H∥ = − E⊥

c1 µ1
、 H∥

′ =
E⊥

′

c1 µ1
を代入すると

Hz
′′
(z=0) =

1

c1 µ2

√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E sin θ · sin
[
ω t− ω

c1
sin θ x+ ζm

]
(77)

sin ζm =
E⊥

′ sin δ′E√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E

, cos ζm =
E⊥ + E⊥

′ cos δ′E√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E

(78)

である。

ここで、(78)式を (53)式と比較すると
ζm = ηe (79)

であることがわかる。

第 2に、(76) (79)式を可能な箇所に適用し、文字の数を減らす。

(76)式を (51)式に代入すると

Ez
′′
(z=0) =

ε1
ε2

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin θ · sin
[
ω t− ω

c1
sin θ · x+ ηm + π

]
= −ε1

ε2

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin θ · sin
[
ω t− ω

c1
sin θ · x+ ηm

]
(80)

となる。

(79)式を (77)式に代入すると

Hz
′′
(z=0) =

1

c1 µ2

√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E sin θ · sin
[
ω t− ω

c1
sin θ x+ ηe

]
(81)

となる。
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第 3に、以上の結果を踏まえて、13.4の境界条件の式 (49) (50) (51) (55) (56) (57)式を整理したものを、ふたたび書き

並べる。

TE波 にかかわるものは (50) (55) (57)式の 3つであったが、整理の結果、次の 3つになる。

磁場の x成分 (72)式。電場の y 成分 (50)式。磁場の z 成分 (81)式。

Hx
′′
(z=0)(72)式 : =

1

c1 µ1

√
E⊥

2 + E⊥
′2 − 2E⊥E⊥

′ cos δ′E cos θ · sin
[
ω t− ω

c1
sin θ x+ ξm

]
(82)

Ey
′′
(z=0)(50)式 : =

√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E sin

[
ω t− ω

c1
sin θ · x+ ηe

]
(83)

Hz
′′
(z=0)(81)式 : =

1

c1 µ2

√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E sin θ · sin
[
ω t− ω

c1
sin θ x+ ηe

]
(84)

ただし

sin ξm =
E⊥

′ sin δ′E√
E⊥

2 + E⊥
′2 − 2E⊥E⊥

′ cos δ′E

, cos ξm =
−E⊥ + E⊥

′ cos δ′E√
E⊥

2 + E⊥
′2 − 2E⊥E⊥

′ cos δ′E

(85)

sin ηe =
E⊥

′ sin δ′E√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E

, cos ηe =
E⊥ + E⊥

′ cos δ′E√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E

(86)

である。

TM波 にかかわるものは (49) (51) (56)式の 3つであったが、整理の結果、次の 3つになる。

電場の x成分 (49)式。磁場の y 成分 (74)式。電場の z 成分 (80)式。

Ex
′′
(z=0)(49)式 : =

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ · sin
[
ω t− ω

c1
sin θ · x+ ξe

]
(87)

Hy
′′
(z=0)(74)式 : =

1

c1 µ1

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin

[
ω t− ω

c1
sin θ x+ ηm

]
(88)

Ez
′′
(z=0)(80)式 : = −ε1

ε2

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin θ · sin
[
ω t− ω

c1
sin θ · x+ ηm

]
(89)

ただし

sin ξe =
E∥

′ sin δ′M√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M

, cos ξe =
E∥ + E∥

′ cos δ′M√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M

(90)

sin ηm =
−E∥

′ sin δ′M√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M

, cos ηm =
E∥ − E∥

′ cos δ′M√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M

(91)

である。
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13.9 反射波の電場

(69) (71) (70)式に z = 0 を代入したもののそれぞれと (82) (84) (88)式のそれぞれとが等しいとおいて方程式とする。

それを解いて E⊥
′ 、 δ′E 、 E∥

′ 、 δ′M を求める。

TE波

第 1に、磁場の z 成分の境界条件を使おうとしてみる。

(84)式は (71)式に z = 0 を代入したものと全く同じ式である。結局、(84)式と (71)式は E⊥
′ 、 δ′E を求めるのに不要

である。

第 2に、磁場の x成分の境界条件を使う。

(82)式を、(69)式に z = 0 を代入した式に等しいものとおくと

1

c1 µ2

√
sin2 θ − c1

2

c2
2

√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E cos

[
ω t− ω

c1
sin θ · x+ ηe

]
=

1

c1 µ1

√
E⊥

2 + E⊥
′2 − 2E⊥E⊥

′ cos δ′E cos θ sin

[
ω t− ω

c1
sin θ · x+ ξm

]
√

sin2 θ − c1
2

c2
2

√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E cos

[
ω t− ω

c1
sin θ · x+ ηe

]
=
µ2

µ1

√
E⊥

2 + E⊥
′2 − 2E⊥E⊥

′ cos δ′E cos θ sin

[
ω t− ω

c1
sin θ · x+ ξm

]
(92)

という方程式が得られる。
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この等式が t によらず成り立つためには

ξm = ηe +
π

2
(93)

でなければならない。

したがって

sin ξm = sin
[
ηe +

π

2

]
= cos ηe

かつ

cos ξm = cos
[
ηe +

π

2

]
= − sin ηe

であるから
sin ξm
cos ξm

=
cos ηe
− sin ηe

(85)式と (86)式を代入して

E⊥
′ sin δ′E

−E⊥ + E⊥
′ cos δ′E

=
E⊥ + E⊥

′ cos δ′E
−E⊥

′ sin δ′E

−E⊥
′2 sin2 δ′E = E⊥

′2 cos2 δ′E − E⊥
2

E⊥
2 = E⊥

′2

E⊥
′ = ±E⊥ (94)

を得る。

(93)式と (94)式を (92)式に代入して、複号同順で√
sin2 θ − c1

2

c2
2

√
2E⊥

2
(
1± cos δ′E

)
cos

[
ω t− ω

c1
sin θ · x+ ηe

]
=
µ2

µ1

√
2E⊥

2
(
1∓ cos δ′E

)
cos θ sin

[
ω t− ω

c1
sin θ · x+ ηe +

π

2

]
√
sin2 θ − c1

2

c2
2

√
2E⊥

2
(
1± cos δ′E

)
cos

[
ω t− ω

c1
sin θ · x+ ηe

]
=
µ2

µ1

√
2E⊥

2
(
1∓ cos δ′E

)
cos θ cos

[
ω t− ω

c1
sin θ · x+ ηe

]
√

sin2 θ − c1
2

c2
2

√
1± cos δ′E =

µ2

µ1

√
1∓ cos δ′E cos θ(

sin2 θ − c1
2

c2
2

) (
1± cos δ′E

)
=
µ2

2

µ1
2

(
1∓ cos δ′E

)
cos2 θ

±
(
sin2 θ − c1

2

c2
2 +

µ2
2

µ1
2 cos2 θ

)
cos δ′E = − sin2 θ +

c1
2

c2
2 +

µ2
2

µ1
2 cos2 θ

c1
2

c2
2 =

ε2 µ2

ε1 µ1
であることを考慮して

cos δ′E = ±− sin2 θ + ε12 µ12 + µ12
2 cos2 θ

+sin2 θ − ε12 µ12 + µ12
2 cos2 θ

cos δ′E = ±
µ12

2 cos2 θ −
(
sin2 θ − ε12 µ12

)
µ12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) (95)

を得る。
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ここで、複号同順により (94)式の符号と (95)式の符号が対応しているから、 E⊥
′ と δ′E は

E⊥
′ = +E⊥ かつ cos δ′E = +

µ12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
µ12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) （この δ′E の値を δ′E(+) とおく）

または

E⊥
′ = −E⊥ かつ cos δ′E = −

µ12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
µ12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) （この δ′E の値を δ′E(−) とおく）

の 2通りとなるが、13.3の最初に記した Ey
′
(z=0) = E⊥

′ sin

[
ω

(
t− sin θ

c1
x

)
+ δ′E

]
まで戻って考えると、後者は

E⊥
′ = +E⊥ かつ δ′E = δ′E(−) + π

と表現してもよいことがわかる。
(
δ′E(−) + π

)
は δ′E(+) であるから、 E⊥

′ と δ′E の解はすべて前者の表現で表されると

言ってよい。よって、上記のうちの「前者だけ」が、 E⊥
′ と cos δ′E の結論である。

これで E⊥
′ と δ′E が定まったような気もするが、 δ′E はまだ定まっていない。 δ′E を定めるには、 cos δ′E だけでなく

sin δ′E も同時に定める必要がある。

E∥
′ と cos δ′E がわかっているので、すでに使った

sin ξm = cos ηe

の関係から sin δ′E が求まる。(85)式と (86)式を代入して

E⊥
′ sin δ′E√

E⊥
2 + E⊥

′2 − 2E⊥E⊥
′ cos δ′E

=
E⊥ + E⊥

′ cos δ′E√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E

sin δ′E =

√
E⊥

2 + E⊥
′2 − 2E⊥E⊥

′ cos δ′E√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E

E⊥ + E⊥
′ cos δ′E

E⊥
′

E⊥
′ = E⊥ 、 cos δ′E =

µ12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
µ12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) を代入すると

sin δ′E =

√
1−

µ12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
µ12

2 cos2 θ +
(
sin2 θ − ε12 µ12

)√
1 +

µ12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
µ12

2 cos2 θ +
(
sin2 θ − ε12 µ12

)
(
1 +

µ12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
µ12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) )

=

√
sin2 θ − ε12 µ12

µ12
2 cos2 θ

· 2µ12
2 cos2 θ

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

)
=

2µ12 cos θ

√
sin2 θ − ε12 µ12

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

)
となる。

以上より、最終的な結論は、次である。

E⊥
′ = E⊥ (96)

cos δ′E =
µ12

2 cos2 θ −
(
sin2 θ − ε12 µ12

)
µ12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) (97)

sin δ′E =
2µ12 cos θ

√
sin2 θ − ε12 µ12

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) (98)

これで、TE波の反射波の電場が求まった。

なお、 θ が臨界角（ sin θ =

√
ε12 µ12 ）から

π

2
まで変化するとき、(97) (98)式より、 cos δ′E は 1 から −1 まで変化し、

sin δ′E は 0 から 0 まで変化し途中つねに正である。ゆえに、 δ′E は 0 から π まで増加し途中つねに正である。

37



TM波

第 3に、磁場の y 成分の境界条件を使う。

(88)式を、(70)式に z = 0 と (76)式を代入した式に等しいものとおくと

1

c1 µ2

−
√
sin2 θ − c1

2

c2
2

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ cos

[
ω t− ω

c1
sin θ · x+ ξe

]

+sin θ · ε1
ε2

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin θ sin

[
ω t− ω

c1
sin θ · x+ ηm

])
=

1

c1 µ1

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin

[
ω t− ω

c1
sin θ x+ ηm

]

−ε2
ε1

√
sin2 θ − c1

2

c2
2

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ cos

[
ω t− ω

c1
sin θ · x+ ξe

]
+

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin2 θ sin

[
ω t− ω

c1
sin θ · x+ ηm

]
=
ε2 µ2

ε1 µ1

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin

[
ω t− ω

c1
sin θ x+ ηm

]
(
sin2 θ − ε2 µ2

ε1 µ1

) √
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin

[
ω t− ω

c1
sin θ x+ ηm

]

=
ε2
ε1

√
sin2 θ − c1

2

c2
2

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ cos

[
ω t− ω

c1
sin θ · x+ ξe

]
ε2 µ2

ε1 µ1
=
c1

2

c2
2 であることを考慮して√

sin2 θ − c1
2

c2
2

√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M sin

[
ω t− ω

c1
sin θ x+ ηm

]
=
ε2
ε1

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M cos θ cos

[
ω t− ω

c1
sin θ · x+ ξe

]
(99)

という方程式が得られる。
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この等式が t によらず成り立つためには

ξe = ηm −
π

2
(100)

でなければならない。

したがって

sin ξe = sin
[
ηm −

π

2

]
= − cos ηm

かつ

cos ξe = cos
[
ηm −

π

2

]
= sin ηm

であるから
sin ξe
cos ξe

=
− cos ηm
sin ηm

(90)式と (91)式を代入して

E∥
′ sin δ′M

E∥ + E∥
′ cos δ′M

=
−E∥ + E∥

′ cos δ′M
−E∥

′ sin δ′M

−E∥
′2 sin2 δ′M = E∥

′2 cos2 δ′M − E∥
2

E∥
2 = E∥

′2

E∥
′ = ±E∥ (101)

を得る。

(100)式と (101)式を (99)式に代入して、複号同順で√
sin2 θ − c1

2

c2
2

√
2E∥

2
(
1∓ cos δ′M

)
sin

[
ω t− ω

c1
sin θ · x+ ηm

]
=
ε2
ε1

√
2E∥

2
(
1± cos δ′M

)
cos θ cos

[
ω t− ω

c1
sin θ · x+ ηm −

π

2

]
√

sin2 θ − c1
2

c2
2

√
2E∥

2
(
1∓ cos δ′M

)
sin

[
ω t− ω

c1
sin θ · x+ ηm

]
=
ε2
ε1

√
2E∥

2
(
1± cos δ′M

)
cos θ sin

[
ω t− ω

c1
sin θ · x+ ηm

]
√
sin2 θ − c1

2

c2
2

√
1∓ cos δ′M =

ε2
ε1

√
1± cos δ′M cos θ(

sin2 θ − c1
2

c2
2

) (
1∓ cos δ′M

)
=
ε2

2

ε1
2

(
1± cos δ′M

)
cos2 θ

∓
(
sin2 θ − c1

2

c2
2 +

ε2
2

ε1
2 cos2 θ

)
cos δ′M = − sin2 θ +

c1
2

c2
2 +

ε2
2

ε1
2 cos2 θ

c1
2

c2
2 =

ε2 µ2

ε1 µ1
であることを考慮して

cos δ′M = ∓− sin2 θ + ε12 µ12 + ε12
2 cos2 θ

+sin2 θ − ε12 µ12 + ε12
2 cos2 θ

cos δ′M = ∓
ε12

2 cos2 θ −
(
sin2 θ − ε12 µ12

)
ε12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) (102)

を得る。
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ここで、複号同順により (101)式の符号と (102)式の符号が対応しているから、 E∥
′ と δ′M は

E∥
′ = +E∥ かつ cos δ′M = −

ε12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
ε12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) （この δ′M の値を δ′M (+) とおく）

または

E∥
′ = −E∥ かつ cos δ′M = +

ε12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
ε12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) （この δ′M の値を δ′M (−) とおく）

の 2通りとなるが、13.3の最初に記した Ex
′
(z=0) = E∥

′ cos θ sin

[
ω

(
t− sin θ

c1
x

)
+ δ′M

]
まで戻って考えると、後者は

E∥
′ = +E∥ かつ δ′M = δ′M (−) + π

と表現してもよいことがわかる。
(
δ′M (−) + π

)
は δ′M (+) であるから、 E∥

′ と δ′M の解はすべて前者の表現で表されると

言ってよい。よって、上記のうちの「前者だけ」が、 E∥
′ と cos δ′M の結論である。

これで E∥
′ と δ′M が定まったような気もするが、 δ′M はまだ定まっていない。 δ′M を定めるには、 cos δ′M だけでなく

sin δ′M も同時に定める必要がある。

E∥
′ と cos δ′M がわかっているので、すでに使った

sin ξe = − cos ηm

の関係から sin δ′M が求まる。(90)式と (91)式を代入して

E∥
′ sin δ′M√

E∥
2 + E∥

′2 + 2E∥E∥
′ cos δ′M

= −
E∥ − E∥

′ cos δ′M√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M

sin δ′M =

√
E∥

2 + E∥
′2 + 2E∥E∥

′ cos δ′M√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M

−E∥ + E∥
′ cos δ′M

E∥
′

E∥
′ = E∥ 、 cos δ′M = −

ε12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
ε12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) を代入すると

sin δ′M =

√
1−

ε12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
ε12

2 cos2 θ +
(
sin2 θ − ε12 µ12

)√
1 +

ε12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
ε12

2 cos2 θ +
(
sin2 θ − ε12 µ12

)
(
−1−

ε12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
ε12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) )

=

√
sin2 θ − ε12 µ12

ε12
2 cos2 θ

· −2 ε122 cos2 θ

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

)
= −

2 ε12 cos θ

√
sin2 θ − ε12 µ12

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

)
となる。

以上より、最終的な結論は、次である。

E∥
′ = E∥ (103)

cos δ′M = −
ε12

2 cos2 θ −
(
sin2 θ − ε12 µ12

)
ε12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) (104)

sin δ′M = −
2 ε12 cos θ

√
sin2 θ − ε12 µ12

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) (105)

これで、TM波の反射波の電場が求まった。

なお、θ が臨界角（ sin θ =

√
ε12 µ12 ）から

π

2
まで変化するとき、(104) (105)式より、cos δ′M は −1 から 1 まで変化し、

sin δ′M は 0 から 0 まで変化し途中つねに負である。ゆえに、 δ′M は −π から 0 まで増加し途中つねに負である。
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13.10 現実の場合

全反射の場合の反射波の電場は (96) (97) (98)式および (103) (104) (105)式に従う、という最終的な結論が得られた。

現実の物質では、 µ12 = 1 とみなせるとすると

E⊥
′TE波 = E⊥

cos δ′E =
cos2 θ − sin2 θ + ε12

1− ε12

sin δ′E =
2 cos θ

√
sin2 θ − ε12

1− ε12

E∥
′TM波 = E∥

cos δ′M =
−ε122 cos2 θ + sin2 θ − ε12
ε12

2 cos2 θ + sin2 θ − ε12

sin δ′M =
−2 ε12 cos θ

√
sin2 θ − ε12

ε12
2 cos2 θ + sin2 θ − ε12

となる。

全反射が起こる場合（ 入射角 θ が

√
ε12 µ12 ≤ θ ≤

π

2
を満たす場合）に、 入射角 θ に依存して 反射波の位相のずれ δ′E

および δ′M がどう変化するかをグラフで表すと、下図のようになる。下図は、 µ12 = 1 の仮定の下で、 θ を横軸にとり、

ε12 = 0.67 の場合の δ′E と δ′M を縦軸にとって描いたグラフである。実線が δ′E 、破線が δ′M である。

-180

-150

-120

-90

-60

-30

 0

 30

 60

 90

 120

 150

 180

 0  10  20  30  40  50  60  70  80  90

δ 
(d

eg
re

e)

θ (degree)

Phase shift of reflected wave ( ε2 / ε1 = 0.67 , µ2 / µ1 = 1.00 )

TE wave
TM wave

41



13.11 エヴァネッセント波

全反射の場合に透過側の媒質中に生じる電場と磁場の波をエヴァネッセント波と呼ぶ。

エヴァネッセント波の電場は (65) (66) (67)式、磁場は (69) (70) (71)式である。(96) (103) (76) (100)式を代入したも

のを書き、さらに (97) (104)式を代入して整理すれば

Ex
′′ = −

√
2E∥

2
√
1 + cos δ′M cos θ cos

[
ω t− ω

c1
sin θ · x+ ηm

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


= −

√
2E∥

2

√
1−

ε12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
ε12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) cos θ

× cos

[
ω t− ω

c1
sin θ · x+ ηm

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


= −2

√
sin2 θ − ε12 µ12

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) cos θ
√
E∥

2 cos

[
ω t− ω

c1
sin θ · x+ ηm

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z



Ey
′′ =

√
2E⊥

2
√
1 + cos δ′E sin

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


=

√
2E⊥

2

√
1 +

µ12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
µ12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) sin

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


= 2µ12

√
1

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) cos θ

√
E⊥

2 sin

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z



Ez
′′ = − 1

ε12

√
2E∥

2
√
1− cos δ′M sin θ sin

[
ω t− ω

c1
sin θ · x+ ηm

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


= − 1

ε12

√
2E∥

2

√
1 +

ε12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
ε12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) sin θ

× sin

[
ω t− ω

c1
sin θ · x+ ηm

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


= −2

√
1

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) sin θ cos θ

×
√
E∥

2 sin

[
ω t− ω

c1
sin θ · x+ ηm

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


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Hx
′′ =

1

c1 µ2

√
sin2 θ − c1

2

c2
2

√
2E⊥

2
√
1 + cos δ′E cos

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


=

√
ε1 µ1

µ2

√
sin2 θ − ε12 µ12

√
2E⊥

2

√
1 +

µ12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
µ12

2 cos2 θ +
(
sin2 θ − ε12 µ12

)
× cos

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


= 2

√
sin2 θ − ε12 µ12

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) cos θ

√
ε1
µ1

E⊥
2 cos

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z



Hy
′′ =

1

c1 µ2

√
2E∥

2

−
√
sin2 θ − c1

2

c2
2

√
1 + cos δ′M cos θ

× sin

[
ω t− ω

c1
sin θ · x+ ηm

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


+

1

ε12

√
1− cos δ′M sin2 θ sin

[
ω t− ω

c1
sin θ · x+ ηm

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z

 
=

√
ε1 µ1

µ2

√
2E∥

2

−√sin2 θ − ε12 µ12

√
1−

ε12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
ε12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) cos θ

+
1

ε12

√
1 +

ε12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
ε12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) sin2 θ


× sin

[
ω t− ω

c1
sin θ · x+ ηm

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


= 2 ε12

√
1

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) cos θ

×
√
ε1
µ1

E∥
2 sin

[
ω t− ω

c1
sin θ · x+ ηm

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z



Hz
′′ =

1

c1 µ2

√
2E⊥

2
√

1 + cos δ′E sin θ sin

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


=

√
ε1 µ1

µ2

√
2E⊥

2

√
1 +

µ12
2 cos2 θ −

(
sin2 θ − ε12 µ12

)
µ12

2 cos2 θ +
(
sin2 θ − ε12 µ12

) sin θ

× sin

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


= 2

√
1

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) sin θ cos θ

×
√
ε1
µ1

E⊥
2 sin

[
ω t− ω

c1
sin θ · x+ ηe

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z


である。
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ηe と ηm は (86) (91)式により与えられるが、それらは E⊥
′ と E∥

′ を用いた表式であり、いま、 E⊥
′ と E∥

′ はすでに

(96) (103)式として得られているので、それを考慮に入れてより単純な表式を求めておく。

(86)式と (96)式を使うと

sin
[
2 ηe

]
= 2 sin ηe cos ηe

= 2
E⊥

′ sin δ′E√
E⊥

2 + E⊥
′2 + 2E⊥E⊥

′ cos δ′E

E⊥ + E⊥
′ cos δ′E√

E⊥
2 + E⊥

′2 + 2E⊥E⊥
′ cos δ′E

= sin δ′E

cos
[
2 ηe

]
= 1− 2 sin2 ηe

= 1− 2

 E⊥
′ sin δ′E√

E⊥
2 + E⊥

′2 + 2E⊥E⊥
′ cos δ′E

2

= cos δ′E

が得られる。

(91)式と (103)式を使うと

sin
[
2 ηm

]
= 2 sin ηm cos ηm

= 2
−E∥

′ sin δ′M√
E∥

2 + E∥
′2 − 2E∥E∥

′ cos δ′M

E∥ − E∥
′ cos δ′M√

E∥
2 + E∥

′2 − 2E∥E∥
′ cos δ′M

= − sin δ′M

cos
[
2 ηm

]
= 1− 2 sin2 ηm

= 1− 2

 −E∥
′ sin δ′M√

E∥
2 + E∥

′2 − 2E∥E∥
′ cos δ′M

2

= − cos δ′M

が得られる。

これらより

ηe =


(E⊥ > 0 )

1

2
δ′E

(E⊥ < 0 )
1

2
δ′E + π

(106)

ηm =


(E∥ > 0 )

1

2
δ′M +

π

2

(E∥ < 0 )
1

2
δ′M −

π

2

(107)

であることがわかる。ただし、 0 ≤ δ′E ≤ π および −π ≤ δ′M ≤ 0 であることに留意する。
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先に得た Ex
′′ 、 Ey

′′ 、 Ez
′′ 、 Hx

′′ 、 Hy
′′ 、 Hz

′′ に (106) (107)式を代入し、結果だけを並べると

Ex
′′ = 2

√
sin2 θ − ε12 µ12

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) cos θ

×
√
E∥

2 sin

[
ω t− ω

c1
sin θ · x+

1

2
δ′M

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z

 (108)

Ey
′′ = 2µ12

√
1

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) cos θ

×
√
E⊥

2 sin

[
ω t− ω

c1
sin θ · x+

1

2
δ′E

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z

 (109)

Ez
′′ = −2

√
1

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) sin θ cos θ

×
√
E∥

2 cos

[
ω t− ω

c1
sin θ · x+

1

2
δ′M

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z

 (110)

Hx
′′ = 2

√
sin2 θ − ε12 µ12

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) cos θ

×
√
ε1
µ1

E⊥
2 cos

[
ω t− ω

c1
sin θ · x+

1

2
δ′E

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z

 (111)

Hy
′′ = 2 ε12

√
1

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) cos θ

×
√
ε1
µ1

E∥
2 cos

[
ω t− ω

c1
sin θ · x+

1

2
δ′M

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z

 (112)

Hz
′′ = 2

√
1

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) sin θ cos θ

×
√
ε1
µ1

E⊥
2 sin

[
ω t− ω

c1
sin θ · x+

1

2
δ′E

]
exp

−ω
√

sin2 θ

c1
2 −

1

c2
2 · z

 (113)

である。ただし、 Ey
′′ 、 Hx

′′ 、 Hz
′′ の表式は E⊥ が正である場合のもので、 E⊥ が負である場合には符号が反転する。

また、 Ex
′′ 、 Ez

′′ 、 Hy
′′ の表式は E∥ が正である場合のもので、 E∥ が負である場合には符号が反転する。

13.12 エヴァネッセント波の Poyntingベクトル

TE波と TM波のそれぞれについて、エヴァネッセント波の Poyntingベクトルの各成分を求める。

Poyntingベクトル S′′ は

S′′ = E′′ ×H ′′

である。

以下の表式は、 E⊥ および E∥ が正であるか負であるかによらず、どのような場合でも成り立つ。
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TE波 （ E∥ = 0 ）

Sx
′′ = (E′′ ×H ′′)x

= Ey
′′Hz

′′

=
4µ12 sin θ cos2 θ

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) ·√ ε1
µ1

E⊥
2 sin2

[
ω t− ω

c1
sin θ · x+

1

2
δ′E

]
exp

−2ω
√

sin2 θ

c1
2 −

1

c2
2 · z


=

2µ12 sin θ cos2 θ

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

)
×
√
ε1
µ1

E⊥
2

 1− cos

[
2

(
ω t− ω

c1
sin θ · x

)
+ δ′E

] exp

−2ω
√

sin2 θ

c1
2 −

1

c2
2 · z


Sy

′′ = (E′′ ×H ′′)y = 0

Sz
′′ = (E′′ ×H ′′)z

= −Ey ′′Hx
′′

= −
4µ12 cos2 θ

√
sin2 θ − ε12 µ12

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

)
×
√
ε1
µ1

E⊥
2 sin

[
ω t− ω

c1
sin θ · x+

1

2
δ′E

]
cos

[
ω t− ω

c1
sin θ · x+

1

2
δ′E

]
exp

−2ω
√

sin2 θ

c1
2 −

1

c2
2 · z


= −

2µ12 cos2 θ

√
sin2 θ − ε12 µ12

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

)
×
√
ε1
µ1

E⊥
2 sin

[
2

(
ω t− ω

c1
sin θ · x

)
+ δ′E

]
exp

−2ω
√

sin2 θ

c1
2 −

1

c2
2 · z


TM波 （ E⊥ = 0 ）

Sx
′′ = (E′′ ×H ′′)x

= −Ez ′′Hy
′′

=
4 ε12 sin θ cos2 θ

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) ·√ ε1
µ1

E∥
2 cos2

[
ω t− ω

c1
sin θ · x+

1

2
δ′M

]
exp

−2ω
√

sin2 θ

c1
2 −

1

c2
2 · z


=

2 ε12 sin θ cos2 θ

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

)
×
√
ε1
µ1

E∥
2

 1 + cos

[
2

(
ω t− ω

c1
sin θ · x

)
+ δ′M

] exp

−2ω
√

sin2 θ

c1
2 −

1

c2
2 · z


Sy

′′ = (E′′ ×H ′′)y = 0

Sz
′′ = (E′′ ×H ′′)z

= Ex
′′Hy

′′

=
4 ε12 cos2 θ

√
sin2 θ − ε12 µ12

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

)
×
√
ε1
µ1

E∥
2 sin

[
ω t− ω

c1
sin θ · x+

1

2
δ′M

]
cos

[
ω t− ω

c1
sin θ · x+

1

2
δ′M

]
exp

−2ω
√

sin2 θ

c1
2 −

1

c2
2 · z


=

2 ε12 cos2 θ

√
sin2 θ − ε12 µ12

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

)
×
√
ε1
µ1

E∥
2 sin

[
2

(
ω t− ω

c1
sin θ · x

)
+ δ′M

]
exp

−2ω
√

sin2 θ

c1
2 −

1

c2
2 · z


46



これの時間平均をとり、エヴァネッセント波による定常的なエネルギーの流れを求めると、次のようになる。

TE波

Sx
′′ =

2µ12 sin θ cos2 θ

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) √ ε1
µ1

E⊥
2 exp

−2ω
√

sin2 θ

c1
2 −

1

c2
2 · z


Sy

′′ = 0

Sz
′′ = 0


(114)

TM波

Sx
′′ =

2 ε12 sin θ cos2 θ

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) √ ε1
µ1

E∥
2 exp

−2ω
√

sin2 θ

c1
2 −

1

c2
2 · z


Sy

′′ = 0

Sz
′′ = 0


(115)

エヴァネッセント波は z 方向へは定常的にエネルギーを運ばないことがわかる。x方向へは定常的なエネルギーの流れが

存在する。

13.13 エネルギーの保存

境界面におけるエネルギーの保存を確かめる。

まず、入射波の Poyntingベクトル S を求める。(11) (12)式を用い、(10)式および
1

c1 µ1
=

√
ε1
µ1
であることを考慮に

入れて

TE波 （ E∥ = 0 ）

S = E ×H

=

 EyHz

0
−EyHx


=

√
ε1
µ1

E⊥
2

 sin θ
0

cos θ

 · sin2 [ω t− ω

c1
sin θ · x− ω

c1
cos θ · z

]

=
1

2

√
ε1
µ1

E⊥
2

 sin θ
0

cos θ

 ·
 1− cos

[
2

(
ω t− ω

c1
sin θ · x− ω

c1
cos θ · z

)] (116)

TM波 （ E⊥ = 0 ）

S = E ×H

=

 −EzHy

0
ExHy


=

√
ε1
µ1

E∥
2

 sin θ
0

cos θ

 · sin2 [ω t− ω

c1
sin θ · x− ω

c1
cos θ · z

]

=
1

2

√
ε1
µ1

E∥
2

 sin θ
0

cos θ

 ·
 1− cos

[
2

(
ω t− ω

c1
sin θ · x− ω

c1
cos θ · z

)] (117)

である。
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次に、反射波の Poynting ベクトル S′ を求める。(11) (12) 式を用い、(96) (103) 式の E⊥
′ 、 E∥

′ を代入し、(10) 式

および
1

c1 µ1
=

√
ε1
µ1
であることを考慮に入れて

TE波 （ E∥ = E∥
′ = 0 ）

S′ = E′ ×H ′

=

 Ey
′Hz

′

0
−Ey ′Hx

′


=

√
ε1
µ1

E⊥
2

 sin θ
0

− cos θ

 · sin2 [ω t− ω

c1
sin θ · x+

ω

c1
cos θ · z + δ′E

]

=
1

2

√
ε1
µ1

E⊥
2

 sin θ
0

− cos θ

 ·
 1− cos

[
2

(
ω t− ω

c1
sin θ · x+

ω

c1
cos θ · z

)
+ 2 δ′E

]
TM波 （ E⊥ = E⊥

′ = 0 ）

S′ = E′ ×H ′

=

 −Ez ′Hy
′

0
Ex

′Hy
′


=

√
ε1
µ1

E∥
2

 sin θ
0

− cos θ

 · sin2 [ω t− ω

c1
sin θ · x+

ω

c1
cos θ · z + δ′M

]

=
1

2

√
ε1
µ1

E∥
2

 sin θ
0

− cos θ

 ·
 1− cos

[
2

(
ω t− ω

c1
sin θ · x+

ω

c1
cos θ · z

)
+ 2 δ′M

]
である。

エヴァネッセント波の Poyntingベクトル S′′ は、すでに求めてある。

以上を使って、境界面上の 面積素片 dσ に出入りするエネルギーを考える。
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dσ へ Poyntingベクトル S の波が入射するとき、 dσ の法線と S との間の角を ψ とすれば、 dσ の S に垂直な面への

射影は dΣ = dσ cosψ で、 dΣ を単位時間あたり通過するエネルギーが dσ へ単位時間あたり入射する。すなわち、 dσ へ

単位時間あたり入射するエネルギーは |S| dΣ = |S| dσ cosψ である。 |S| cosψ は |Sz| に等しいことに留意すると、結局、
dσ へ単位時間あたり入射するエネルギーは |Sz| dσ であると言える。

よって、境界面上は z = 0 であることを考慮に入れて、 dσ へ単位時間あたり入射する入射波のエネルギーが

TE波 ∣∣Sz (z=0)

∣∣ dσ =
1

2
cos θ

√
ε1
µ1

E⊥
2

 1− cos

[
2

(
ω t− ω

c1
sin θ · x

)] dσ

TM波 ∣∣Sz (z=0)

∣∣ dσ =
1

2
cos θ

√
ε1
µ1

E∥
2

 1− cos

[
2

(
ω t− ω

c1
sin θ · x

)] dσ

であり、 dσ から単位時間あたり放射される反射波のエネルギーが

TE波 ∣∣∣Sz ′(z=0)

∣∣∣ dσ =
1

2
cos θ

√
ε1
µ1

E⊥
2

 1− cos

[
2

(
ω t− ω

c1
sin θ · x

)
+ 2 δ′E

] dσ

TM波 ∣∣∣Sz ′(z=0)

∣∣∣ dσ =
1

2
cos θ

√
ε1
µ1

E∥
2

 1− cos

[
2

(
ω t− ω

c1
sin θ · x

)
+ 2 δ′M

] dσ

であることが導かれる。

dσ に単位時間あたり出入りするエヴァネッセント波のエネルギーも同様に導けるが、それに関しては、 Sz
′′ が正と負の

両方の値をとることに注意しなければならない。 Sz
′′ が正ならば dσ からの透過側の媒質へのエネルギーの放射であり、

負ならば dσ への透過側の媒質からのエネルギーの入射である。そこで、 dσ からの放射を正とし dσ への入射を負として

符号をつけて表すことにすると、 dσ に単位時間あたり出入りするエヴァネッセント波のエネルギーは Sz
′′ dσ であり

TE波

Sz
′′
(z=0) dσ = −

2µ12 cos2 θ

√
sin2 θ − ε12 µ12

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) √ ε1
µ1

E⊥
2 sin

[
2

(
ω t− ω

c1
sin θ · x

)
+ δ′E

]
dσ

TM波

Sz
′′
(z=0) dσ =

2 ε12 cos2 θ

√
sin2 θ − ε12 µ12

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) √ ε1
µ1

E∥
2 sin

[
2

(
ω t− ω

c1
sin θ · x

)
+ δ′M

]
dσ

となる。
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これらより

TE波

∣∣Sz (z=0)

∣∣ dσ − ∣∣∣Sz ′(z=0)

∣∣∣ dσ
=

1

2
cos θ

√
ε1
µ1

E⊥
2

 1− cos

[
2

(
ω t− ω

c1
sin θ · x

)] dσ

−1

2
cos θ

√
ε1
µ1

E⊥
2

 1− cos

[
2

(
ω t− ω

c1
sin θ · x

)
+ 2 δ′E

] dσ

=
1

2
cos θ

√
ε1
µ1

E⊥
2

 cos

[
2

(
ω t− ω

c1
sin θ · x

)
+ 2 δ′E

]
− cos

[
2

(
ω t− ω

c1
sin θ · x

)] dσ

=
1

2
cos θ

√
ε1
µ1

E⊥
2

 cos

[
2

(
ω t− ω

c1
sin θ · x

)]
cos
[
2 δ′E

]
− sin

[
2

(
ω t− ω

c1
sin θ · x

)]
sin
[
2 δ′E

]

− cos

[
2

(
ω t− ω

c1
sin θ · x

)]  dσ

=
1

2
cos θ

√
ε1
µ1

E⊥
2

( cos
[
2 δ′E

]
− 1

)
cos

[
2

(
ω t− ω

c1
sin θ · x

)]

− sin
[
2 δ′E

]
sin

[
2

(
ω t− ω

c1
sin θ · x

)]  dσ

=
1

2
cos θ

√
ε1
µ1

E⊥
2

− 2 sin2 δ′E cos

[
2

(
ω t− ω

c1
sin θ · x

)]

−2 sin δ′E cos δ′E sin

[
2

(
ω t− ω

c1
sin θ · x

)]  dσ

= − cos θ

√
ε1
µ1

E⊥
2 sin δ′E

 sin δ′E cos

[
2

(
ω t− ω

c1
sin θ · x

)]
+ cos δ′E sin

[
2

(
ω t− ω

c1
sin θ · x

)] dσ

= − cos θ

√
ε1
µ1

E⊥
2 sin δ′E sin

[
2

(
ω t− ω

c1
sin θ · x

)
+ δ′E

]
dσ

= −
2µ12 cos2 θ

√
sin2 θ − ε12 µ12

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) √ ε1
µ1

E⊥
2 sin

[
2

(
ω t− ω

c1
sin θ · x

)
+ δ′E

]
dσ

= Sz
′′
(z=0) dσ
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TM波

∣∣Sz (z=0)

∣∣ dσ − ∣∣∣Sz ′(z=0)

∣∣∣ dσ
=

1

2
cos θ

√
ε1
µ1

E∥
2

 1− cos

[
2

(
ω t− ω

c1
sin θ · x

)] dσ

−1

2
cos θ

√
ε1
µ1

E∥
2

 1− cos

[
2

(
ω t− ω

c1
sin θ · x

)
+ 2 δ′M

] dσ

=
1

2
cos θ

√
ε1
µ1

E∥
2

 cos

[
2

(
ω t− ω

c1
sin θ · x

)
+ 2 δ′M

]
− cos

[
2

(
ω t− ω

c1
sin θ · x

)] dσ

=
1

2
cos θ

√
ε1
µ1

E∥
2

 cos

[
2

(
ω t− ω

c1
sin θ · x

)]
cos
[
2 δ′M

]
− sin

[
2

(
ω t− ω

c1
sin θ · x

)]
sin
[
2 δ′M

]

− cos

[
2

(
ω t− ω

c1
sin θ · x

)]  dσ

=
1

2
cos θ

√
ε1
µ1

E∥
2

( cos
[
2 δ′M

]
− 1

)
cos

[
2

(
ω t− ω

c1
sin θ · x

)]

− sin
[
2 δ′M

]
sin

[
2

(
ω t− ω

c1
sin θ · x

)]  dσ

=
1

2
cos θ

√
ε1
µ1

E∥
2

− 2 sin2 δ′M cos

[
2

(
ω t− ω

c1
sin θ · x

)]

−2 sin δ′M cos δ′M sin

[
2

(
ω t− ω

c1
sin θ · x

)]  dσ

= − cos θ

√
ε1
µ1

E∥
2 sin δ′M

 sin δ′M cos

[
2

(
ω t− ω

c1
sin θ · x

)]
+ cos δ′M sin

[
2

(
ω t− ω

c1
sin θ · x

)] dσ

= − cos θ

√
ε1
µ1

E∥
2 sin δ′M sin

[
2

(
ω t− ω

c1
sin θ · x

)
+ δ′M

]
dσ

=
2 ε12 cos2 θ

√
sin2 θ − ε12 µ12

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) √ ε1
µ1

E∥
2 sin

[
2

(
ω t− ω

c1
sin θ · x

)
+ δ′M

]
dσ

= Sz
′′
(z=0) dσ

が示される。

ゆえに、TE波と TM波のいずれについても、境界面上のあらゆる点においてエネルギーの保存の成り立っていることが

確かめられる。
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13.14 Goos-Hänchenシフト

Goosと Hänchenは、1947年に、全反射の場合には入射波のエネルギーが境界面上の入射した点より少しずれた位置か

ら反射波のエネルギーとして放射されることを実験的に示した。これは、入射波のエネルギーが、いったん透過側の媒質へ

入り込み、エヴァネッセント波によって境界面に平行な方向へ運ばれてから入射側の媒質へ戻るためだと説明される。この

現象をGoos-Hänchenシフトと呼ぶ。次がその模式図である。

境界面

θ θ

XGH

このときの、入射波のエネルギーが入射した境界面上の点から反射波のエネルギーとして放射される境界面上の点までの

変位を XGH とする。

XGH を求める。

以下は、R.H.Renard, “Total Reflection: A New Evaluation of the Goos-Hänchen Shift”, J.Opt.Soc.Am., 54-10,

p.1190-1197 (1964) を参考にしている。

時間平均を見ると
∣∣∣S∣∣∣ と ∣∣∣S′

∣∣∣ は等しい。したがって、定常的には、入射波によって持ち込まれるエネルギーは、すべて
反射波によって持ち去られる。つまり、入射波によって運ばれて来て透過側の媒質へ入り込んだエネルギーは、すべて必ず、

入射側の媒質へ戻るということである。

このとき、透過側の媒質に入ったエネルギーは必ずその入射した点から境界面上で XGH だけ変位した位置より入射

側の媒質に戻るのだと仮定すると、下図に示した領域 P（最も太い実線）に入射したエネルギーのすべてが下図に示した

半無限平面 Q（最も太い点線）を通過することになり、また、Qを通過するエネルギーはそれ以外にないということになる。

これより、時間平均で考えて(
単位時間あたりに P に入射する

入射波のエネルギー

)
=

(
単位時間あたりに Q を通過する
エヴァネッセント波のエネルギー

)
という方程式が成り立つことになる。この方程式を成り立たせるという条件より XGH が定まる。

境界面

Q

P

52



まず、単位時間あたり P に入射する入射波のエネルギーは、P が z 軸に垂直（x-y 平面に平行）な平面であるから、∫∫
P全体

Sz (z=0) dx dy である。 Sz (z=0) は (116) (117)式より求まるが、 x と y によらない定数となるので、そのことを

先に考慮すれば、単位時間あたり Pに入射する入射波のエネルギーは Sz (z=0) × (Pの面積) であることがわかる。ゆえに、

考える領域の y 方向の長さを Y とすれば、Pの面積が XGH Y なので

TE波
(
単位時間あたりに P に入射する

入射波のエネルギー

)
= Sz (z=0) ·XGH Y

=
1

2
cos θ

√
ε1
µ1

E⊥
2 ·XGH Y (118)

TM波
(
単位時間あたりに P に入射する

入射波のエネルギー

)
= Sz (z=0) ·XGH Y

=
1

2
cos θ

√
ε1
µ1

E∥
2 ·XGH Y (119)

である。

次に、単位時間あたりに Qを通過するエヴァネッセント波のエネルギーは、Qが x軸に垂直（y-z 平面に平行）な平面で

あるから、

∫∫
Q全体

Sx
′′ dy dz である。 Sx

′′ には (114) (115)式を代入することができる。よって

TE波
(
単位時間あたりに Q を通過する
エヴァネッセント波のエネルギー

)
=

∫∫
Q全体

Sx
′′ dy dz

=

∫ ∞

z=0

∫
y

2µ12 sin θ cos2 θ

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) √ ε1
µ1

E⊥
2 exp

−2ω
√

sin2 θ

c1
2 −

1

c2
2 · z

 dy dz

=
2µ12 sin θ cos2 θ

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) √ ε1
µ1

E⊥
2 Y

1

2ω

√
sin2 θ

c1
2 −

1

c2
2

=
µ12 sin θ cos2 θ

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) 1√
sin2 θ − ε12 µ12

√
ε1
µ1

E⊥
2 λ1
2π

Y (120)

TM波
(
単位時間あたりに Q を通過する
エヴァネッセント波のエネルギー

)
=

∫∫
Q全体

Sx
′′ dy dz

=

∫ ∞

z=0

∫
y

2 ε12 sin θ cos2 θ

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) √ ε1
µ1

E∥
2 exp

−2ω
√

sin2 θ

c1
2 −

1

c2
2 · z

 dy dz

=
2 ε12 sin θ cos2 θ

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) √ ε1
µ1

E∥
2 Y

1

2ω

√
sin2 θ

c1
2 −

1

c2
2

=
ε12 sin θ cos2 θ

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) 1√
sin2 θ − ε12 µ12

√
ε1
µ1

E∥
2 λ1
2π

Y (121)

である。ただし、 λ1 は入射側の媒質中での波長。
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(118)式と (120)式とが等しいとおき、また、(119)式と (121)式とが等しいとおくと

TE波 1

2
cos θ

√
ε1
µ1

E⊥
2 ·XGH Y =

µ12 sin θ cos2 θ

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) 1√
sin2 θ − ε12 µ12

√
ε1
µ1

E⊥
2 λ1
2π

Y

TM波 1

2
cos θ

√
ε1
µ1

E∥
2 ·XGH Y =

ε12 sin θ cos2 θ

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) 1√
sin2 θ − ε12 µ12

√
ε1
µ1

E∥
2 λ1
2π

Y

となり、これを解いて

TE波
XGH =

1

π

1

µ12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) µ12 sin θ cos θ√
sin2 θ − ε12 µ12

λ1 (122)

TM波
XGH =

1

π

1

ε12
2 cos2 θ +

(
sin2 θ − ε12 µ12

) ε12 sin θ cos θ√
sin2 θ − ε12 µ12

λ1 (123)

を得る。

(122) (123)式が結論である。
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